
Communications

This Chapter Supplement describes how to develop communication tools for Newton based on the
Motorola Radio Packet Modem Native Mode Endpoint.

Introduction

The Motorola Radio Packet Modem Native Mode Endpoint provides NewtonScript programmers
with Motorola’s radio packet modem (RPM) - facilitated access to DataTAC wireless communica-
tions networks.

This supplement to the Newton Programmer’s Guide is written assuming that the reader is familiar
with NewtonScript programming in general and the Newton Programmer’s Guide, especially Chap-
ter 14, “Communications”, in particular. This Supplement is organized in the same sections as
Chapter 14; the information contained in each of these sections is clarified or augmented as is appro-
priate for proper usage of Motorola Radio Packet Modem Native Mode Endpoint. [This endpoint
may also be referred to here forward as the “RPMnative endpoint”.]

The RPMnative endpoint supports packet, non-connection oriented communications on DataTAC
networks. The radio packet modems, which are currently supported by the RPMnative endpoint, are:

• Motorola’s “Eagle” DataTAC PCMCIA, in the Newton’s PCMCIA slot.

• Motorola’s Infotac, attached to the Newton’s DIN8 serial port.

The RPMnative endpoint provides access to a radio packet modem’s capability to send and receive
messages between itself and wireless “Access Points” in a DataTAC network. Users of the
RPMnative endpoint may then implement higher-level protocols, as may be appropriate, to provide
their users with services such as “end-to-end” message transfer, and internetworked access to other
wired and wireless networks, to mention a few possibilities. For example , access to Ardis™ or
RAM™ networks and other subscribers of these networks would be provided by “transport”/higher-

level software which would use the RPMnative endpoint.

The RPMnative endpoint also provides a “NewtonScript Frame Conversion Facility”. This facility
provides services to “flatten” and “unflatten” NewtonScript objects of class ‘frame . This Conver-
sion Facility is useful in the communications of NewtonScript ‘frame � objects; these objects are
typically complex with a variety of slots which are of NewtonScript classes that do not permit the
complete inspection and manipulation of their underlying “byte representations” via normal
NewtonScript object accessor functions. In other words, these complex ‘frame objects and their
lengths are not fully accessible as “raw bytes” and thus may not be appropriately prepared for the
exclusively packet-oriented data communications supported by the RPMnative endpoint.

“Flattening” refers to the conversion of a NewtonScript ‘frame class object into a NewtonScript
object of primitive class ‘array, whose elements are exclusively of primitive class ‘integer ,
where each element contains an unsigned byte (0..255). “Unflattening” refers to the inverse of this
operation.

Endpoints

The RPMnative endpoint is a standard NewtonScript endpoint, with a few additional features de-
signed to provide efficient access to the inherently packet-oriented, connection-less communications
facilities of the DataTAC wireless networks being accessed. Control of the Radio Packet Modem
transmitter, receiver and other radio-related features are provided through standard endpoint option
control.

The RPMnative endpoint is very similar to the other standard NewtonScript endpoints; it maintains
the same single prototype — protoEndpoint — and same limitations as other endpoints.

Options

The specifics of the DataTAC wireless network access at hand, including certain communications
parameters, such as transmitter control, battery saving control, control of asynchronous notification
of network status changes, and so forth, may be set by supplying option frames in the
configOptions slot of the RPMnative endpoint. Option frames are composed for the
RPMnative endpoint as described in base document. Some options for the endpoint are “read-only”;
for these options, the GetOptions method, described below, may be used to obtain certain infor-
mation related to the endpoints operation, such as relative RF signal strength, radio packet modem
serial number, etc.

It is important to note that for the setting of certain options, the changes desired, based on the ��values
supplied, may take significant time for the endpoint to implement. This endpoint, unlike the Newton
OS ROM-based endpoints, generates “events” when the changes requested in a SetOptions call
are completely made. Thus, SetOptions Newton Script calls are effectively “asynchronous” for
the RPMnative endpoint. While a SetOptions call is still being internally processed by the
RPMnative endpoint, it is an error to issue another SetOptions call, and, if such a call is made, an
exception will be thrown: The SetOptions “channel” is effectively busy during this processing.

Specifying the Service

To use the RPMnative service from NewtonScript, you specify the communication service by pro-
viding a ‘service option, in the endpoint frame. Every endpoint must have one ‘service
option. The RPMnative service is specified as follows:

Constant Value Service
kCMSRPMnative “rpmn” RPMnative

Note
If any other ‘service options are specified in the RPMnative endpoint frame, this is an error and
an exception will be thrown. •

Note [re: ongoing development]

The constant, kCMSRPMnative , or any of the other constant symbols, are not yet in a Newton Tool
Kit (NTK) platform file; thus, the appropriate values must be used directly in NewtonScript pro-
grams that use the RPMnative endpoint [26jul94]•

Thus, to create an RPMnative endpoint, you would do as follows:

myRPMnativeEndpoint :=
{ _proto:protoEndpoint,

configOptions:
[{ label: kCMSRPMnative,

type: ‘service,
opCode: opSetRequired },

],
};

After specifying the ‘service option, you then may desire to set certain ‘option options,
which depending on your particular usage of the RPMnative endpoint. The RPMnative endpoint
does not support any ‘address options.

Note

If an ‘address option is specified in the RPMnative endpoint frame, it is ignored. There may be
some sort of addressing-related option required in future releases; perhaps addressing in the sense of
which wireless network to join. •

Let’s look at the RPMnative service in more detail.

RPMnative Endpoints

RPMnative endpoints can involve a range of operating parameters: radio battery saving settings,
event notification settings, and so on.

Here’s an example of a typical usage:

myRPMnativeEndpoint :=

{ _proto:protoEndpoint,
configOptions:
[
{ label: kCMSRPMnative,

type: ‘service,
opCode: opSetRequired },

{ label: kCMOrpmnPowerPrefParms,
type: ‘option,
opCode: opSetNegotiate,
data: [0,0,0,4 //batterySaveLevel set to 4

]},

{ label: kCMOrpmnEventParms,
type: ‘option,
opCode: opSetRequired,
data: [1, //rcvdMsgsEvtEnb = true

1, //batteryEvtEnb = true
0, //radioEvtEnb = false
0, //onOffEvtEnb = false
1, //svcEvtEnb = true
1, //setOptCmplEvtEnb = true
1, //outCmplEvtEnb = true
0 //DON’T CARE must be 0

]},
],

};

Note that one ‘option specification uses an opCode of opSetNegotiate , which means that if
the requested values are not available, a reasonable substitute will be accepted.

Additionally, note that the data slot of each option contains an array of integers. There must always
be a multiple of four integers. This is very important. Communications scripting under 1.x versions
of the Newton Operating System does not support the passage of complex option data slots to the
RPMnative endpoint. Options are passed as “generic”, with the data slot containing an ‘array
object whose elements are exclusively integers. This documentation specifies the exact order and
interpretation of each of these integers as option data significant to the RPMnative endpoint. The
upper three bytes of each integer are ignored; only the low byte of each integer is passed by Commu-
nications scripting down to the actual routines that interpret the options.

The RPMnative ‘option labels are as follows:

Label Value
kCMOrpmnRadioParms “rdio”
kCMOrpmnMessageSizeMaxParms “mgsz”
kCMOrpmnEventParms “evnt”
kCMOrpmnPowerMgmtParms “pwrp”

kCMOrpmnModemIDParms “mdid”
kCMOrpmnDisconnectParms “dsco”
kCMOrpmnFrameCvtCtlParms “fcvt”

General Parameters

The kCMOrpmnRadioParms option specifies certain wireless radio-related parameters. The data
array of the option has several significant elements, which may be set to 0 or 1, to disable or enable
the corresponding features, respectively. The processing of this option may take significant time and
the kCMErpmnsetOptCmpl event may be useful for the Newton Script programmer to determine
when the SetOption call may be used again.

This option has the following form:

{ label: kCMOrpmnRadioParms,
type: ‘option,
opCode: opSetNegotiate, // or
data: [1, //transmitterEnable = true

1, //receiverEnable = true
0,0, //DON’T CARE must be 0

]},

The following elements are present:

Element name Default Value
transmitterEnable 1
receiverEnable 1

Note
It is not a valid Option setting to specify that the transmitter remain enabled and that the receiver be
disabled. •

The kCMOrpmnMessageSizeMax option is a read-only option which has one effective item in
its data array in which the maximum size of a message in bytes is returned. The processing of this
option is immediate. This option has the following form:

{ label: kCMOrpmnMessageSizeMax ,
type: ‘option,
opCode: opGetCurrent,
data: [0,0,0,0 //messageSizeMaxBytes..

//..returned here
]},

Element name Value
messageSizeMaxBytes integer extracted as

data[0] << 24 + data[1] << 16
+ data[2] << 8 + data[3]

Event Parameters

The kCMOrpmnEventParms lets you specify which endpoint events should be enabled, resulting
in calls to the method in your EventHandler slot, as described below. The processing of this
option is immediate. This option has the following form:

{ label: kCMOrpmnEventParms ,
type: ‘option,
opCode: opSetRequired,
data: [1, //rcvdMsgsEvtEnb = true

1, //batteryEvtEnb = true
0, //radioEvtEnb = false
1, //onOffEvtEnb = true
1, //svcEvtEnb = true
1, //setOptCmplEvtEnb = true
1, //outCmplEvtEnb = true
0 //DON’T CARE must be 0

]},

Use the following elements in your kCMOrpmnEventParms Option frame’s data array to access
these parameters:

Element name Default Value
rcvdMsgEvtEnb 1
batteryEvtEnb 0
radioEvtEnb 0
onOffEvtEnb 1
svcEvtEnb 1
setOptCmplEvtEnb 1
outCmplEvtEnb 1

Power Management Parameters

The kCMOrpmnPowerMgmtParms lets you specify the power conservation/management setting in
the underlying radio packet modem. The processing of this option may take significant time and the
kCMErpmnSetOptCmpl event may be useful in determining when the SetOption call may be
used again. This option has the following form:

{ label: kCMOrpmnPowerMgmtParms ,
type: ‘option,
opCode: opSetNegotiate,
data: [0,0,0,3 //batterySaveLevel = 3

]},

Use the following elements in your kCMOrpmnPowerMgmtParms Option frame’s data array to
access these parameters:

Element name Default Value
batterySaveLevel 4

The batterySaveLevel element specifies “how hard” the endpoint, together with the radio
packet modem, will try to save modem batteries. This can vary between 0, for no battery saving, but
highest network responsiveness, to 5, for maximum battery savings, at a possible cost of delayed
receipt and transmission of messages.

Note
The current Motorola radio packet modems only implement a binary choice for power-saving
modes. Thus, the RPMnative endpoint activates their power-save features for any non-zero value of
batterySaveLevel .•

Modem Identification Parameters

The kCMOrpmnModemIDParms option is an option which cannot be set. The data array of the
option has several informational elements. The processing of this option is immediate. This option
has the following form:

{ label: kCMOrpmnModemIDParms ,
type: ‘option,
opCode: opGetCurrent,
data: [0,0,0,0, //modemHexIDStr returned

0,0,0,0, //modemVersion
]},

The following elements are present:

Element name Value
modemHexIDStr integer representing 8 packed

hexidecimal digits extracted as
data[0] << 24 + data[1] << 16
+ data[2] << 8 + data[3]

modemVersion 4 ASCII digits

Disconnect Control Parameters

The kCMOrpmnDisconnectParms option allows for the control of the actions the RPMnative
endpoint takes in its execution of its Disconnect method. The processing of this option is imme-
diate.

This option has the following form:

{ label: kCMOrpmnDisconnectParms ,
type: ‘option,

opCode: opSetRequired,
data: [0,0,0, // DON’T CARE must be 0

1 // disconnectLeavingRPMEnabled = true
]},

The data array of the option has one element:

Element name Default Value
disconnectLeavingRPMEnabled 1

This parameter provides you with a way to control whether you would like to keep the Radio Packet
Modem “on the air” or not after the endpoint has been disconnected. Certain model RPMs can be
kept “on the air” and function independently of the Newton, as “pager-like” devices.

Frame Conversion Control Parameters

The kCMOrpmnFrameCvtCtlParms lets you control the NewtonScript Frame Conversion
Facility in the RPMnative endpoint. This Facility has three primary modes: Idle, the default mode,
Flattening, and Unflattening. Each mode has substates that you both explicitly control and implicitly
control by using the GetOptions method. These substate settings must be coordinated with your
usage of the endpoint’s Output , OutputFrame , and SetInputSpec methods. The processing
of this option is immediate. This option has the following form:

{ label: kCMOrpmnFrameCvtCtlParms,
type: ‘option,
opCode: opSetRequired,
data: [0,0,0,0, //conversionMode = kcvtModeNoChg

0,0,0,2, //substate = kcvtSubstIn
0,0,0,0, //byteCount

]},

All three elements are integers which must be extracted from the 4 NewtonScript integers, e.g.
conversionMode = data[0] << 24 + data[1] <<16

+ data[2] << 8 + data[3]; .

Use the following element in your kCMOrpmnFrameCvtCtlParms Option frame’s data frame
to access the parameters which must be controlled and inspected during the Frame Conversion
process:

Element name Default Value
conversionMode kcvtModeNoChg (0)
substate kcvtSubstUndef (0)
byteCount 0

The conversionMode element specifies what mode you wish to set for the Conversion Facility.
You can use the following values in this slot:

Constant Value Meaning
kcvtModeNoChg 0 do not change mode
kcvtModeIdle 1 no conversion in progress or allowed
kcvtModeFlatten 2 flattening operation in progress
kcvtModeUnflatten 3 unflattening operation in progress

The kcvtModeNoChg value, which is only used with the SetOptions method, specifies that the
current mode should not be changed. The kcvtModeIdle value, specifies the current mode to be
the Idle mode; in this mode the Conversion facility is not active. The kcvtModeFlatten value,
specifies the current mode to be the “flatten” mode, in which the Conversion facility is active in the
conversion of an object of class ‘frame into bytes. The kcvtModeUnflatten value, specifies
the current mode to be the “unflatten” mode, in which the Conversion facility is active in the conver-
sion of bytes into an object of class ‘frame .

The substate element specifies what substate you wish to set for the Conversion Facility. You
can use the following values in this element:

Constant Value Meaning
kcvtSubstUndef 0 substate is undefined
kcvtSubstOut 1 accepting data for conversion
kcvtSubstIn 2 providing converted data

The kcvtSubstUndef value, which is only seen with the GetOptions method, specifies that
the current substate is undefined. The kcvtSubstOut value, specifies the current substate to be
the Output mode; in this mode the Conversion facility is ready to accept data for conversion. The
kcvtSubstOut value, specifies the current substate to be the Output mode; in this mode the
Conversion facility is ready to accept data for conversion.

You inspect the byteCount element while making certain substate transitions during the Conver-
sion procedure to determine the number of bytes in a flattened representation of a NewtonScript
‘frame object.

You should implement the following procedure to convert a ‘frame object into a flattened array of
bytes:

a) Make sure you have no active input specification. [If you do, either wait for it to
complete, i.e. your method in its InputScript slot is called, or cancel it by
setting the endpoint’s nextInputSpec slot to nil and then calling your
endpoint’s SetInputSpec method with a nil argument.]

b) Use your endpoint’s SetOptions method to set conversionMode to
kcvtModeFlatten . [This implicitly sets the substate to kcvtSubstOut .
]

c) Use your endpoint’s OutputFrame method with the frame to be flattened as
the first data argument, and nil as the value of the flags argument.

c1) Use your endpoint’s Output method to output a single integer, with nil as the
value of the flags argument. The value of this integer is a “don’t care”.

c2) Use your endpoint’s FlushOutput method to allow the endpoint to finish
processing..

d) Use your endpoint’s GetOptions method to get the current value of the
kCMOrpmnFrameCvtCtlParms options; the byteCount element of the data
array returned will have the number of bytes produced in the conversion of the
frame;. [This implicitly sets the substate to kcvtSubstIn .]

e) Form an input specification without a recvFlags slot, with a inputForm slot
set to ‘ra w, and a byteCount slot equal to the number of bytes obtained in the
GetOptions method call. Use the endpoint’s SetInputSpec method to
activate this input spec.

f) Your input specification’s inputScript will be invoked in very short order.
The data argument will be the flattened frame data, which will have been format-
ted as ‘raw . Now, you may do what is necessary to continue the data communica-
tion of this converted frame (e.g. packetization, sequencing, checksum formation,
etc.).

g) Finally, you must use your endpoint’s SetOptions method to set
conversionMode to kcvtModeIdle ; this completes your usage of the Con-
version Facility for the flattening of the frame.

On the receiving side, once you have received an array of bytes, which you know to be a complete
NewtonScript ‘frame object, and which was flattened and then transmitted previously (i.e. via the
protocols you have defined and implemented), you should implement the following procedure to
convert this array of bytes back into a ‘frame object:

a) Make sure you have no active input specification. [If you do either wait for it to
complete, i.e. your method in its InputScript slot is called, or cancel it my
setting the endpoint’s nextInputSpec slot to nil and then calling your
endpoint’s SetInputSpec method with a nil argument.]

b) Use your endpoint’s SetOptions method to set conversionMode to
kcvtModeUnflatten . [This implicitly sets the substate to
kcvtSubstOut .].

c) Use a single invocation your endpoint’s Output method with your received
array of bytes that is a flattened ‘frame object as the first data argument, and
nil as the value of the flags argument.

c1) Use your endpoint’s Output method to output a single integer, with nil as the
value of the flags argument. The value of this integer is a “don’t care”.

c2) Use your endpoint’s FlushOutput method to allow the endpoint to finish
processing.

d) Use your endpoint’s SetOptions method to set the substate to
kcvtSubstIn .

e) Form an input specification without a recvFlags slot, with a inputForm slot
set to ‘frame . Use the endpoint’s SetInputSpec method to activate this input
spec.

f) Your input specification’s inputScript will be invoked in very short order.
The data argument will be the ‘frame object. Now, you may do what is neces-
sary to process this now-normal NewtonScript object

g) Finally, you must use your endpoint’s SetOptions method to set
conversionMode to kcvtModeIdle ; this completes your usage of the Con-
version Facility for the unflattening of the frame; wait for
kCMErpmnSetOptCmpl event.

Instantiating the RPMnative Endpoint

After you’ve defined your endpoint and supplied the necessary options in the configOptions
slot, you then instantiate the RPMnative endpoint using the same procedures as for any other end-
point.

Establishing a Connection

The RPMnative endpoint defines connection in a way that is different than other endpoints, such as
the modem or MNP serial endpoints. There is a “connection” involved, but it is not a connection to
another peer endpoint. Rather, in this context, “connection” denotes the connection of the
RPMnative endpoint to the “ether” of the wireless radio network

Establishing a connection thus represents getting the endpoint attached to the wireless DataTAC
network.

To initiate this connection process, call Connect , using standard endpoint procedures.

Note
If Listen is called in an attempt to establish a connection to the wireless network, this is an error
and an exception will be thrown. •

Sending Data

Output

endpoint : Output (data , flags)

As is the case for all endpoints, two methods are provided for sending data using the RPMnative
endpoint: Output and OutputFrame . However to send a frame, keeping the structure intact and
without any conversion, OutputFrame can be used but such usage is problematic, in that the
conversion inherent in this method of a NewtonScript frame into transmittable bytes may produce
more data than that amount which can be sent in a RPMnative radio packet. The correct method to
send a NewtonScript frame is to use the RPMnative endpoint’s Frame Conversion Facility to flatten
it into “bytes” and then sent these bytes using the Output method.

Both Output and OutputFrame have a second parameter, flags , which must not be set to nil .
The RPMnative endpoint only supports the end-of-message (EOM) flag communications; the com-
munications services this endpoint provides are packet in nature. Thus, to send data with the
RPMnative endpoint, you must either specify kFrame + kMore , if additional output is to come
(for the message currently being “composed”), or just kFrame .

It is important to note that the first byte of every message output will be sent to the RPM radio as the
NCL-defined “Send Options Bit Field byte”, which is defined in the NCL spec under the discussion
of the Command Class SDU “Send Message(SEND)”. The layout of this byte is as follows:

MSB LSB
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0 1 0 0 0 - priority- resend

where Bit7->Bit4 are reserved, Bit2->Bit1 are priority [00 is “normal”, 01 is “very low”, 10 is
“low”, and “11” is “high”], and Bit 0 is the “RESEND” setting. Please see the NCL specification for
more information.

If nil is specified as the value of the flags parameter, this is not a data communications opera-
tion; depending on the state of the NewtonScript Frame Conversion Facility, which was detailed in
an above section of this chapter supplement, this may or may not be an error.

For example:

sendOptionsByte := 0x42; //1st byte of the message is..
//..the “Send Options byte” with.
//..resend bit clear and the..
//..”priority” set to “very low”

endpoint:Output(sendOptionsByte, kFrame + kMore); //Don’t..
//..forget to output this byte

endpoint:Output(“MG”, kFrame + kMore);
endpoint:Output(“2832531”, kFrame + kMore);

endpoint:Output(“sometext”, kFrame + kMore);
endpoint:Output(“endofArdismessageMark”, kFrame);

Note
It is important that Newton Script programmers use, and write their software to be adaptive to, the
maximum size of a message, as is obtained from a GetOptions call with label
kCMOrpmnMessageSizeMax .•

IMPORTANT
For the RPMnative endpoint OutputFrame should not be used for data communications; it should
only be used in conjunction with the RPMnative endpoint’s NewtonScript Frame Conversion Facil-
ity, as discussed above. It is important to note, that if you were to try to use OutputFrame with
flags including T_FRAME, that OutputFrame may produce more data bytes than the maximum
size of the message supported by the RPMnative endpoint. This would result in an exception being
thrown. Use GetOptions , with label kCMOrpmnMessageSizeMax , to get the maximum for
the currently instantiated endpoint. •

Receiving Data

As with all endpoints, to receive data, you need to provide an input specification. The RPMnative
endpoint supports input specification termination on detection of EOM from the radio packet mo-
dem, attached to the wireless network. This is the intended usage mode of the RPMnative endpoint;
an entire wireless network message is to be received using one input specification. This effectively
places limitations on the values of the slots of this input specification, as is discussed in the next
paragraph.

The slots of an input spec, as it is called, defines an input block, and can have the following slots:

recvFlags
A control field. For RPMnative, this must be set to kFrame . This is slot is omitted during
the usage of NewtonScript Frame Conversion Facility.

byteCount
A byte count. For RPMnative, this should be larger than the maximum network message size,
i.e. at least 2049.

endCharacter
A termination character. For RPMnative, this should be nil .

discardAfter
For RPMnative, this must be set to the same value as the byteCount slot.

inputScript
A method to be called when a block has been received.

inputForm
A format in which to return data. You can specify:

‘string to return a character string, converting ASCII into Unicode as required.

‘raw to return a raw byte stream. These bytes are not converted into Unicode. This is (probably)
the preferred method using RPMnative.

‘frame should only be used during the usage of NewtonScript Frame Conversion Facility.

‘array to return an array of integers, each corresponding to one byte of input. This format is the
default format. This is also a useful method using RPMnative.

partialScript
For RPMnative, this should be nil .

partialFrequency
For RPMnative, this should be nil .

After defining your input spec, you set it in action by calling SetInputSpec , as is the standard
procedure with all endpoints. Since your input spec frame had recvFlags: kFrame in it, your
inputScript is called with the complete received message passed to it, i.e. your inputScript
is terminated by the internal endpoint interpreter when it has received an end-of-message (EOM)
indication. You may obtain the size of this message either from the data itself using protocols you
have defined, or by using a NewtonScript array function, such as Length() .

Receiving Partial Input

The RPMnative endpoint does not support the reception of partial input; the PartialScript slot
of your input spec should always be nil. Additionally, you should not call Input() , Partial() ,
FlushInput() , or FlushPartial() . If you would like to discard input data, you must do this
in your program.

Handling Events

The RPMnative endpoint provides a mechanism to give you notification of certain communications
related events. These events include those related to the arrival of messages in the radio packet
modem, changes in wireless network coverage, and also changes in the battery level in the modem,
to mention a few.

By using either the configOptions slot in your endpoint frame or the SetOptions method,
you may enable the generation of event information by the RPMnative endpoint.

To process these status events, you should define a EventHandler slot in your endpoint frame,
which contains a method to be called when an event occurs.

EventHandler

endpoint : EventHandler (eventKind , eventData)

If provided in your endpoint frame, this method is called whenever a event, whose generation has
been enabled via Option control, occurs.

eventKind
An integer code which identifies that a tool-specific event which has occurred. This is
always, T_SPECEVT, which has a value 1.

eventData
An integer which provides information concerning the RPMnative event; it both identifies
the event and supplies 16 bits of event-type-specific information in the low half word.

The list of eventData values is as follows, where XX in the literal or XXXX in the hex value
represent a half-word (16 bits) of additional event-type-specific information:

Label Value
kCMErpmnRcvdMsgs ‘\00mXX’ (0x006DXXXX)
kCMErpmnBattery ‘\00pXX’ (0x0070XXXX)
kCMErpmnRadio ‘\00rXX’ (0x0071XXXX)
kCMErpmnOnOff ‘\00oXX’ (0x006FXXXX)
kCMErpmnSvc ‘\00sXX’ (0x0073XXXX)
kCMErpmnOutCpml ‘\00xXX’ (0x0078XXXX)
kCMErpmnSetOptCmpl ‘\00cXX’ (0x0063XXXX)

For kCMErpmnRcvdMsgs events, the eventData low half-word is the number of messages
available, locally in the Newton and/or radio packet modem.

For kCMErpmnBattery , the eventData low half-word represents the relative charge condition
of the radio packet modem’s battery, where 0 is dead and 100 is fully changed.

For kCMErpmnRadio , the eventData low half-word represents the relative quality of the radio
packet modem’s current assessment of signal strength, where 0 is no signal and 50 is best.

For kCMErpmnOnOff , the eventData low half-word is 0 if the radio has been turned off.

For kCMErpmnSvc, the eventData low half-word is 1 if there is network service available, a 0 if
there is not.

For kCMErpmnSetOptCmpl and kCMErpmnOutCpml, the eventData low half-word is a
Newton Script error code, which reports the outcome of the processing of a SetOptions or Out-
put call, respectively. This half-word should be OR-ed with 0xFFFF0000 to produce the negative
integer Newton error code.

Changing or Adding Options

As is standard practice with endpoints, you’ll want to set most options in the configOptions slot
of the endpoint. If you want to change or set certain options after the endpoint has been instantiated,
use the SetOptions method. You can determine current or default values of one or more options
by calling GetOptions .

Handling Exceptions

The RPMnative endpoint’s exception handling is no different than any other endpoint. You can also
provide an ExceptionHandler method in your endpoint frame.

Closing a Connection

The RPMnative endpoint operates no differently than any other endpoint.

DIS-

TRIBUTION/CHANGE HISTORY:

v0.2 26 July 94 1316
Copies to RM and Apple Program Management (Steve).

v0.201 26 July 94
typo corrections

v0.202 26 July 94 1556
typo corrections; added r/o option kCMOrpmnMessageSizeMax

v0.203 02 Aug 94 1424
typo corrections; moved recvFlags:kFrame specification from endpoint frame to input specification frame;
changed values of events to be 30bit due to sign extension in NewtonScript; changed range of eventInfo for
kCMErpmnBattery to 0..100; changed range of eventInfo for kCMErpmnRadio to 0..50; changed default

value of radioEvtEnb for kCMOrpmnEventParms to true ; added event kCMErpmnOnOff and
kCMErpmnSvc ; Copies to RM, Apple Prgm.Mgmt. (Steve), & internal.

v0.204 08 Aug 94 1040
typo corrections; added r/o options kCMOrpmnDisconnectParms and kCMOrpmnFrameCvtCtlParms ,
extensive discussion of Frame Conversion Facility and an example of its usage. Copies to RM , Apple Prgm.Mgmt.
(Steve), & internal Apple.

v0.205 16 Aug 94 1633
typo corrections; reworks the details of the data slot of the options to pass all information as integers as is neces-
sary in 1.x versions of the OS. Copies to internal Apple.

v0.206 18 Aug 94 1633
typo corrections; changed value of event codes to avoid sign extension problems in NewtonScript interpreter.
Changed specification of discardAfter slot of input specs. Copies to RM, Apple Prgm.Mgmt. (Steve), &
internal Apple.

v1.0a1 13 Sept 94 1055
typo corrections and misc. cleanup; added concept of “asynchronous” Output and SetOptions and the events
related to them; made Listen call an error. Copies to Apple Prgm.Mgmt. (Steve, Leo), & internal Apple.

v1.0a2 1 Nov 94 1055
Changed the definition of the arguments to EventHandler: eventData now contains all the useful information.
Added new steps “c1)” and “c2)” to the discussion of frame conversion both to and from a flattened array of bytes.

Copies to RM, PCOE, Apple Prgm.Mgmt. (Steve, Leo), & internal Apple.
v1.0a3 7 Mar 95 955

Changed to reflect that NewtonScript user must send the “Send Options Byte” as the 1st byte Output in every
message. This correction reflects the sematic change made to “balance” the message content of sent and received
messages.

v1.1b3 20 Apr 95 1627
Changed to have document rev, i.e. “1.1b3” match the software release in Beta test.

