Apple

PRESS

Newton Programmer’s Guide

For Newton 2.0

A
vy

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Harlow, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1996 Apple Compuiter, Inc.

All rights reserved.

No part of this publication may be
reproduced, stored in aretrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Compuiter, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Appleretains al intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for licensed Newton platforms.

Every effort has been made to ensure
that the information in this manual is
accurate. Appleis not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, Espy,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
Newton Connection Kit, and New York
are trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Apple Press, the Apple Press Signature,
eWorld, Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are trademarks
of Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
CompuServeis aregistered service
mark of CompuServe, Inc.
FrameMaker is aregistered trademark
of Frame Technology Corporation.
Helveticaand Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is aregistered
trademark of International Typeface
Corporation.

Microsoft is aregistered trademark of
Microsoft Corporation. Windowsisa
trademark of Microsoft Corporation.
QuickView™ islicensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIESON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THISPRODUCT.

Even though Apple hasreviewed this
manual, APPLE MAKESNO
WARRANTY OR REPRESENTATION,
EITHER EXPRESSOR IMPLIED, WITH
RESPECT TO THISMANUAL, ITS
QUALITY,ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. ASA
RESULT, THISMANUAL ISSOLD “AS
1S” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK ASTO
ITSQUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGESRESULTING FROM ANY
DEFECT OR INACCURACY INTHIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
INLIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESSOR IMPLIED. No
Apple dealer, agent, or employeeis
authorized to make any modification,
extension, or addition to thiswarranty.

Some states do not allow the exclusion or
limitation of implied warrantiesor liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. Thiswarranty gives you
specific legal rights, and you may also have
other rightswhich vary from stateto state.

Preface

Table of Contents

Figures and Tables XXXl

About This Book xiiii

Chapter 1

Who Should Read This Book xliii
Related Books xliii
Newton Programmer’s Reference CD-ROM
Sample Code xlv
Conventions Used in This Book xlv
Special Fonts xlv
Tap Versus Click Xlvi
Frame Code xlvi
Developer Products and Support xlvii
Undocumented System Software Objects

Overview 11

xliv

xlviii

Operating System 1-1
Memory 1-3
Packages 1-4

System Services 1-4
Object Storage System 1-5
View System 1-6
Text Input and Recognition 1-7
Stationery 1-8
Intelligent Assistant 1-8
Imaging and Printing 1-9
Sound 1-9
Book Reader 1-10
Find 1-10
Filing 1-11

Communications Services 1-11
NewtonScript Application Communications 1-13
Routing Through the In/Out Box 1-13
Endpoint Interface 1-14
Low-Level Communications 1-14
Transport Interface 1-14
Communication Tool Interface 1-15
Application Components 1-15
Using System Software 1-17
The NewtonScript Language 1-18
What’s New in Newton 2.0 1-18
NewtApp 1-18
Stationery 1-19
Views 1-19
Protos 1-20
Data Storage 1-20
Text Input 1-20
Graphics and Drawing 1-21
System Services 1-21
Recognition 1-22
Sound 1-22
Built-in Applications 1-22
Routing and Transports 1-23
Endpoint Communication 1-23
Utilities 1-24
Books 1-24

Chapter 2 Getting Started 21

Choosing an Application Structure 2-1
Minimal Structure 2-1
NewtApp Framework 2-2
Digital Books 2-3
Other Kinds of Software 2-4
Package Loading, Activation, and Deactivation 2-4
Loading 2-5
Activation 2-5
Deactivation 2-6

Chapter 3

Effects of System Resets on Application Data

Flow of Control 2-8

Using Memory 2-8

Localization 2-9

Developer Signature Guidelines 2-9
Signature 2-9
How to Register 2-10
Application Name 2-10
Application Symbol 2-11
Package Name 2-11

Summary 2-12
View Classes and Protos 2-12
Functions 2-12

Views 31

2-7

About Views 31
Templates 32
Views 34
Coordinate System 3-6
Defining View Characteristics 3-8
Class 3-9
Behavior 39
Location, Size, and Alignment 3-10
Appearance 3-20
Opening and Closing Animation Effects
Other Characteristics 3-24
Inheritance Links 3-24
Application-Defined Methods 3-26
View Instantiation 3-26
Declaring aView 3-27
Creating aView 3-28
Closing aView 3-29
View Compatibility 3-30
New Drag and Drop API 3-30
New Functions and Methods 3-30
New Messages 3-30
New Alignment Flags 331

3-23

Changes to Existing Functions and Methods 331
New Warning Messages 3-32
Obsolete Functions and M ethods 3-32
Using Views 3-32
Getting References to Views 3-32
Displaying, Hiding, and Redrawing Views 3-33
Dynamically Adding Views 3-33
Showing aHidden View 3-34
Adding to the stepChildren Array 3-34
Using the AddStepView Function 3-35
Using the BuildContext Function 3-36
Creating Templates 3-36
Making a Picker View 3-37
Changing the Vaues in viewFormat 3-37
Determining Which View Item Is Selected 3-37
Complex View Effects 3-38
Making Modal Views 3-38
Finding the Bounds of Views 3-39
Animating Views 3-40
Dragging aView 3-40
Dragging and Dropping with Views 3-40
Scrolling View Contents 341
Redirecting Scrolling Messages 3-42
Working With View Highlighting 3-42
Creating View Dependencies 3-43
View Synchronization 3-43
Laying Out Multiple Child Views 343
Optimizing View Performance 3-44
Using Drawing Functions 3-44
View Fill 3-44
Redrawing Views 3-44
Memory Usage 3-45
Scrolling 3-46
Summary of Views 3-47
Constants 3-47
Functions and Methods 3-51

Chapter 4 NewtApp Applications 41

About the NewtApp Framework 4-1
The NewtApp Protos 4-2
About newtApplication 4-4
About newtSoup 4-5
The Layout Protos 4-5
The Entry View Protos 4-8
About the Slot View Protos 4-9
Stationery 4-11
NewtApp Compatibility 4-11
Using NewtApp 4-12
Constructing a NewtApp Application 4-12
Using Application Globals 4-13
Using newtApplication 4-14
Using the Layout Protos 4-16
Using Entry Views 4-19
Using the Required NewtApp Install and Remove Scripts
Using Slot Views in Non-NewtApp Applications 4-22
Modifying the Base View 4-22
Using aFalse Entry View 4-23
Creating a Custom Labelled Input-Line Slot View 4-24
Summary of the NewtApp Framework 4-25
Required Code 4-25
Protos 4-25

Chapter 5 Stationery 51

4-21

About Stationery 51
The Stationery Buttons 5-2
Stationery Registration 5-4
Getting Information about Stationery 5-5
Compatibility Information 5-5
Using Stationery 55
Designing Stationery 55
Using FillNewEntry 5-6
Extending the Notes Application 57
Determining the SuperSymbol of the Host 5-7

Vii

Creating a DataDef 5-8
Defining DataDef Methods 5-9
Creating ViewDefs 5-11
Registering Stationery for an Auto Part 5-13
Using the MinimalBounds ViewDef Method 5-14
Stationery Summary 5-15
Data Structures 5-15
Protos 5-15
Functions 5-17

Chapter 6 Pickers, Pop-up Views, and Overviews 61

About Pickers and Pop-up Views 6-1
Pickers and Pop-up View Compatibility 6-2
New Pickers and Pop-up Views 6-2
Obsolete Function 6-4
Picker Categories 6-4
General-Purpose Pickers 6-4
Using protoGeneral Popup 6-7
Map Pickers 6-8
Text Pickers 6-10
Date, Time, and L ocation Pop-up Views 6-17
Number Pickers 6-21
Picture Picker 6-21
Overview Protos 6-22
Using protoOverview 6-24
Using protoL.istPicker 6-26
Using the Data Definitions Frame in a List Picker 6-29
Specifying Columns 6-29
Having a Single Selectionin aList Picker 6-30
Having Preselected Itemsin aList Picker 6-30
Validation and Editing in protoListPicker 6-31
Changing the Font of protoListPicker 6-33
Using protoSoupOverview 6-33
Determining Which protoSoupOverview Item Is Hit 6-33
Displaying the protoSoupOverview Vertical Divider 6-34
Roll Protos 6-35
View Classes 6-36

viii

Chapter 7

Specifying the List of Items for a Popup 6-37
Summary 6-41

General Picker Protos 6-41

Map Pickers 6-45

Text Picker Protos 6-46

Date, Time, and Location Pop-up Views 6-50

Number Pickers 6-53

Picture Picker 6-53

Overview Protos 6-54

Roll Protos 6-57

View Classes 6-58

Functions 6-59

Controls and Other Protos 7-1

Controls Compatibility 7-1
Scroller Protos 7-2
Implementing a Minimal Scroller 7-3
Automatic Arrow Feedback 7-3
Scrolling Examples 7-4
Scrolling Lines of Text 7-4
Scrolling in the Dates Application 7-5
Scrolling In a Graphics Application 7-5
Scroll Amounts 7-5
Advanced Usage 7-6
Button and Box Protos 7-6
Implementing a Simple Button 7-10
Selection Tab Protos 7-11
Gauge and Slider Protos 7-12
Implementing a Simple Slider 7-13
Time Protos 7-14
Implementing a Simple Time Setter 7-15
Specia View Protos 7-16
View Appearance Protos 7-18
Status Bar Protos 7-19
Summary 7-20
Scroller Protos 7-20
Button and Box Protos 7-22

Selection Tab Protos 7-25
Gauges and Slider Protos 7-25
Time Protos 7-27

Special View Protos 7-28
View Appearance Protos 7-30
Status Bar Protos 7-31

Chapter 8 Text and Ink Input and Display s-1

About Text 8-1
About Text and Ink 81
Written Input Formats 8-2
Caret Insertion Writing Mode 8-3
Fonts for Text and Ink Display 8-3
About Text Views and Protos 8-3
About Keyboard Text I nput 8-4
The Keyboard Registry 8-5
The Punctuation Pop-up Menu 8-5
Compatibility 8-6
Using Text 8-6
Using Views and Protos for Text Input and Display 8-6
Generd Input Views 8-6
Paragraph Views 8-10
Lightweight Paragraph Views 8-11
Using Input Line Protos 8-12
Displaying Text and Ink 8-14
Text and Ink in Views 8-14
Using Fonts for Text and Ink Display 8-17
Rich Strings 8-22
Text and Styles 8-25
Setting the Caret Insertion Point 8-26
Using Keyboards 8-26
Keyboard Views 8-26
Using Keyboard Protos 8-28
Defining Keysin aKeyboard View 8-30
Using the Keyboard Registry 8-36
Defining Tabbing Orders 8-36
The Caret Pop-up Menu 8-38

Handling Input Events 8-38
Testing for a Selection Hit 8-38
Summary of Text 8-39
Text Constants and Data Structures 8-39

Views 8-42
Protos 8-43
Text and Ink Display Functions and Methods 8-47
Keyboard Functions and Methods 8-49
Input Event Functions and M ethods 8-50
Chapter 9 Recognition 91
About the Recognition System 9-1
Classifying Strokes 9-3
Gestures 9-4
Shapes 9-5
Text 9-6
Unrecognized Strokes 9-7
Enabling Recognizers 9-8
View Flags 9-9
Recognition Configuration Frames 9-9
View Flags vs. RecConfig Frames 9-10
Where to Go From Here 9-10
Recognition Failure 9-11
System Dictionaries 9-11
Correction and Learning 9-13
User Preferences for Recognition 9-14
Handwriting Recognition Preferences 9-15
RecToggle Views 9-18
Flag-Naming Conventions 9-19
Recognition Compatibility 9-20
Using the Recognition System 9-21
Types of Views 9-21
Configuring the Recognition System 9-22
Obtaining Optimum Recognition Performance 9-23

Accepting Pen Input 9-24
Taps and Overlapping Views 9-24
Recognizing Shapes 9-25

Xi

Recognizing Standard Gestures 9-25

Combining View Flags 9-26

Recognizing Text 9-27
Recognizing Punctuation 9-28
Suppressing Spaces Between Words 9-28
Forcing Capitalization 9-29
Justifying to Width of Parent View 9-29
Restricting Input to Single Lines or Single Words 9-29
Validating Clipboard and Keyboard I nput 9-29

Using the vAnythingAllowed Mask 9-30

Summary 9-31
Constants 9-31
Data Structures 9-33

Chapter 10 Recognition: Advanced Topics 10-1

About Advanced Topics in Recognition 10-1
How the System Uses Recognition Settings 10-1
ProtoCharEdit Views 10-4
Ambiguous Charactersin protoCharEdit Views 10-5
Deferred Recognition 10-5
User Interface to Deferred Recognition 10-5
Programmer’s Overview of Deferred Recognition 10-6
Compatibility Information 10-7
Using Advanced Topics in Recognition 10-7
Using recConfig Frames 10-8
Creating arecConfig Frame 10-9
Using RecConfig Frames to Enable Recognizers 10-10
Returning Text, Ink Text or Sketch Ink 10-10
Fine-Tuning Text Recognition 10-12
Manipulating Dictionaries 10-13
Single-Character Input Views 10-13
Creating Single-L etter Input Views 10-15
Changing Recognition Behavior Dynamically 10-17
Using protoRecToggle Views 10-19
Creating the recToggle View 10-19
Configuring Recognizers and Dictionaries for recToggle
Views 10-20
Creating the _recogSettings Slot 10-20

Xii

Providing the _recogPopup Slot 10-22
Accessing Correction Information 10-23
Using Custom Dictionaries 10-24
Creating a Custom Enumerated Dictionary 10-24
Creating the Blank Dictionary 10-25
Adding Words to RAM-Based Dictionaries 10-26
Removing Words From RAM-Based Dictionaries 10-27
Saving Dictionary Datato a Soup 10-27
Restoring Dictionary Data From a Soup 10-28
Using Your RAM-Based Custom Dictionary 10-28
Removing Your RAM-Based Custom Dictionary 10-30
Using System Dictionaries Individually 10-30
Working With the Review Dictionary 10-30
Retrieving the Review Dictionary 10-31
Displaying Review Dictionary Browsers 10-31
Adding Words to the User Dictionary 10-32
Removing Words From the User Dictionary 10-32
Adding Words to the Expand Dictionary 10-33
Removing Words From the Expand Dictionary 10-34
Retrieving Word Expansions 10-34
Retrieving the Auto-Add Dictionary 10-34
Disabling the Auto-Add Mechanism 10-35
Adding Words to the Auto-Add Dictionary 10-35
Removing Words From the Auto-Add Dictionary 10-36
Using protoCharEdit Views 10-36
Positioning protoCharEdit Views 10-36
Manipulating Text in protoCharEdit Views 10-37
Restricting Characters Returned by protoCharEdit Views 10-38
Customized Processing of Input Strokes 10-40
Customized Processing of Double Taps 10-41
Changing User Preferences for Recognition 10-41
Modifying or Replacing the Correction Picker 10-42
Using Stroke Bundles 10-42
Stroke Bundles Example 10-42
Summary of Advanced Topics in Recognition 10-44
Constants 10-44
Data Structures 10-45
Recognition System Prototypes 10-49
Additional Recognition Functions and Methods 10-54

Xiii

Chapter 11 Data Storage and Retrieval 111

About Data Storage on Newton Devices 11-1
Introduction to Data Storage Objects 11-2
Whereto Go From Here 11-6
Stores 11-6
Packages 11-7
Soups 11-7

Indexes 11-8
Saving User Preference Datain the System Soup 11-10
Queries 11-10
Querying for Indexed Values 11-10
Begin Keys and End Keys 11-12
Tag-based Queries 11-14
Customized Tests 11-14
Text Queries 11-15
Cursors 11-16
Entries 11-17
Alternatives to Soup-Based Storage 11-18
Dynamic Data 11-18
Static Data 11-19
Compatibility Information 11-20
Obsolete Store Functions and Methods 11-20
Soup Compatibility Information 11-20
Query Compatibility Information 11-23
Obsolete Entry Functions 11-24
Obsolete Data Backup and Restore Functions 11-24

Using Newton Data Storage Objects 11-25
Programmer’s Overview 11-25
Using Stores 11-28

Store Object Size Limits 11-29
Referencing Stores 11-29
Retrieving Packages From Stores 11-29
Testing Stores for Write-Protection 11-30
Getting or Setting the Default Store 11-30
Getting and Setting the Store Name 11-30
Accessing the Store Information Frame 11-31
Using Soups 11-31
Naming Soups 11-31
Registering and Unregistering Soup Definitions 11-32

Xiv

Retrieving Existing Soups 11-33
Adding Entries to Soups 11-34
Adding an Index to an Existing Soup 11-35
Removing Soups 11-36
Using Built-in Soups 11-36
Making Changes to Other Applications Soups 11-37
Adding Tagsto an Existing Soup 11-37

Using Queries 11-37
Querying Multiple Soups 11-38
Querying on Single-Slot Indexes 11-38
Querying for Tags 11-41
Querying for Text 11-43
Internationalized Sorting Order for Text Queries 11-44
Queries on Descending Indexes 11-45
Querying on Multiple-Slot Indexes 11-47
Limitations of Index Keys 11-51

Using Cursors 11-53
Getting a Cursor 11-53
Testing Validity of the Cursor 11-53
Getting the Entry Currently Referenced by the Cursor 11-54
Moving the Cursor 11-54
Counting the Number of Entriesin Cursor Data 11-56
Getting the Current Entry’s Index Key 11-56
Copying Cursors 11-56

Using Entries 11-57
Saving Frames as Soup Entries 11-57
Removing Entries From Soups 11-58
Modifying Entries 11-59
Moving Entries 11-60
Copying Entries 11-60
Sharing Entry Data 11-61
Using the Entry Cache Efficiently 11-61

Using Soup Change Notification 11-63
Registering Your Application for Change Notification 11-63
Unregistering Your Application for Change Notification 11-65
Responding to Notifications 11-65
Sending Notifications 11-66

Summary of Data Storage 11-68
Data Structures 11-68
Data Storage Functions and Methods 11-71

XV

Special-Purpose Obijects for
Chapter 12 Data Storage and Retrieval 121

About Special-Purpose Storage Objects 12-1
Entry Aliases 12-1
Virtual Binary Objects 12-2
Parts 12-3
Store Parts 12-4
Mock Entries 12-4
Mock Stores, Mock Soups, and Mock Cursors 12-6
Using Special-Purpose Data Storage Objects 12-7
Using Entry Aliases 12-7
Using Virtual Binary Objects 12-8
Creating Virtual Binary Objects 12-8
Modifying VBO Data 12-10
VBOs and String Data 12-12
Using Store Parts 12-12
Creating a Store Part 12-13
Getting the Store Part 12-14
Accessing Datain Store Parts 12-14
Using Mock Entries 12-14
Implementing the EntryAccess Method 12-15
Creating a New Mock Entry 12-15
Testing the Validity of a Mock Entry 12-16
Getting Mock Entry Data 12-16
Changing the Mock Entry’s Handler 12-16
Getting the Mock Entry’s Handler 12-16
Implementing Additional Handler Methods 12-16
Summary of Special-Purpose Data Storage Objects 12-17
Data Structures 12-17
Functions and Methods 12-17

Chapter 13 Drawing and Graphics 131

About Drawing 13-1
Shape-Based Graphics 13-2
Manipulating Shapes 13-7
The Style Frame 13-7

XVi

Drawing Compatibility 13-8
New Functions 13-8
New Style Attribute Slots 13-8
Changes to Bitmaps 13-8
Changes to the HitShape Method 13-8
Changesto View Classes 13-9

Using the Drawing Interface 13-9
How to Draw 139

Responding to the ViewDrawScript Message 13-9

Drawing Immediately 13-10
Using Nested Arrays of Shapes 13-10

The Transform Slot in Nested Shape Arrays 13-11

Default Transfer Mode 13-12
Transfer Modes at Print Time 13-12
Controlling Clipping 13-12
Transforming a Shape 13-13
Using Drawing View Classes and Protos 13-14
Displaying Graphics Shapes and Ink 13-14
Displaying Bitmaps, Pictures, and Graphics Shapes
Displaying Picturesin aclEditView 13-15
Displaying Scaled Images of Other Views 13-15
Trandating Data Shapes 13-16
Finding Points Within a Shape 13-16
Using Bitmaps 13-17
Making CopyBits Scale Its Output Bitmap 13-18
Storing Compressed Pictures and Bitmaps 13-18
Capturing a Portion of aView Into a Bitmap 13-18
Rotating or Flipping a Bitmap 13-19
Importing Macintosh PICT Resources 13-20
Drawing Non-Default Fonts 13-20

PICT Swapping During Run-Time Operations 13-21

Optimizing Drawing Performance 13-22
Summary of Drawing 13-23

Data Structure 13-23

View Classes 13-23

Protos 13-24

Functions and Methods 13-26

XVii

Chapter 14 Sound 141

About Newton Sound 14-1
Event-related Sounds 14-2
Soundsin ROM 14-2
Sounds for Predefined Events 14-2
Sound Data Structures 14-3
Compatibility 14-3
Using Sound 14-4
Creating and Using Custom Sound Frames 14-4
Creating Sound Frames Procedurally 14-5
Cloning Sound Frames 14-5
Playing Sound 14-5
Using a Sound Channel to Play Sound 14-5
Playing Sound Programmatically 14-6
Synchronous and A synchronous Sound 14-7
Advanced Sound Techniques 14-8
Pitch Shifting 14-9
Manipulating Sample Data 14-10
Summary of Sound 14-11
Data Structures 14-11
Protos 14-11
Functions and Methods 14-12
Sound Resources 14-12

Chapter 15 Filing 151

About Filing 15-1
Filing Compatibility Information 15-9

Using the Filing Service 15-10

Overview of Filing Support 15-10

Creating the Labels Slot 15-11
Creating the appName Slot 15-11
Creating the appAll Slot 15-12
Creating the appObjectFileThisIn Slot 1512
Creating the appObjectFileThisOn Slot 15-12
Creating the appObjectUnfiled Slot 15-12
Specifying the Target 15-13

XViii

Chapter 16

Creating the label sFilter slot 15-14
Creating the storesFilter slot 15-14
Adding the Filing Button 15-14
Adding the Folder Tab View 15-14
Customizing Folder Tab Views 15-15
Defining a TitleClickScript Method 15-15
Implementing the FileThis Method 15-15
Implementing the NewFilingFilter Method 15-16
Using the Folder Change Notification Service 15-18
Creating the doCardRouting slot 15-18
Using Local or Global Folders Only 15-19
Adding and Removing Filing Categories
Programmatically 15-19
Interface to User-Visible Folder Names 15-19
Summary 15-20
Data Structures for Filing 15-20
Application Base View Slots 15-20
Filing Protos 15-21
Filing Functions and Methods 15-22
Application-Defined Filing Functions and Methods 15-22

Find 161

About the Find Service 16-1
Compatibility Information 16-6
Using the Find Service 16-6
Technical Overview 16-6
Global and Selected Finds 16-9
Checklist for Adding Find Support 16-10
Creating the title Slot 16-11
Creating the appName Slot 16-11
Using the Finder Protos 16-11
Implementing Search Methods 16-14
Using the StandardFind Method 16-15
Using Your Own Text-Searching Method 16-16
Finding Text With a ROM_CompatibleFinder 16-17
Implementing the DateFind Method 16-18
Adding Application Data Sets to Selected Finds 16-19
Returning Search Results 16-21

XiX

Implementing Find Overview Support 16-21
The FindSoupExcerpt Method 16-21
The ShowFoundltem Method 16-22
Replacing the Built-in Find Slip 16-24
Reporting Progress to the User 16-24
Registering for Finds 16-25
Summary 16-26
Finder Protos 16-26
Functions and Methods 16-28
Application-Defined Methods 16-28

Chapter 17 Additional System Services 171
About Additional System Services 17-1
Undo 17-1

Undo Compatibility 17-2
Idler Objects 17-2
Change Notifications 17-2
Online Help 17-3
Alertsand Alarms 17-3
User Alerts 17-3
User Alarms 17-3
Periodic Alarms 17-4
Alarms Compatibility 17-5
Progress Indicators 17-5
Automatic Busy Cursor 17-5
Notify Icon 17-5
Status Slips With Progress Indicators 17-6
Power Registry 17-7
Power Compatibility Information 17-7
Using Additional System Services 17-7
Using Undo Actions 17-8
The Various Undo Methods 17-8
Avoiding Undo-Related “Bad Package” Errors
Using Idler Objects 17-9
Using Change Naotification 17-10
Using Online Help 17-10

XX

17-9

Using Alerts and Alarms 17-11
Using the Notify Method to Display User Alerts 17-11
Creating Alarms 17-11
Obtaining Information about Alarms 17-12
Retrieving Alarm Keys 17-12
Removing Installed Alarms 17-13
Common Problems With Alarms 17-13
Using the Periodic Alarm Editor 17-14
Using Progress Indicators 17-15
Using the Automatic Busy Cursor 17-15
Using the Notify Icon 17-15
Using the DoProgress Function 17-16
Using DoProgress or Creating Your Own
protoStatusTemplate 17-18
Using protoStatusTemplate Views 17-18
Using the Power Registry 17-24
Registering Power-On Functions 17-24
Registering Login Screen Functions 17-25
Registering Power-Off Functions 17-25
Using the Battery Information Functions 17-26
Summary of Additional System Services 17-27
Undo 17-27
Idlers 17-27
Notification and Alarms 17-27
Reporting Progress 17-28
Power Registry 17-29

Chapter 18 Intelligent Assistant 181

About the Assistant 18-1

Introduction 18-1
Input Strings 18-2
No Verb in Input String 18-2
Ambiguous or Missing Information 18-4
The Task Slip 18-4

Programmer’s Overview 18-5

Matching Words With Templates 18-8

The Signature and PreConditions Slots 18-10

XXi

The Task Frame 18-11
The Entries Slot 18-11
The Phrases Slot 18-11
The OrigPhrase Slot 18-12
The Vaue Slot 18-12
Resolving Template-Matching Conflicts 18-13
Compatibility Information 18-14
Using the Assistant 18-15
Making Behavior Available From the Assistant 18-15
Defining Action and Target Templates 18-15
Defining Your Own Frame Types to the Assistant 18-16
Implementing the PostParse Method 18-17
Defining the Task Template 18-18
Registering and Unregistering the Task Template 18-19
Displaying Online Help From the Assistant 18-19
Routing Items From the Assistant 18-20
Summary 18-21
Data Structures 18-21
Templates 18-21
Developer-Supplied Task Template 18-22
Developer-Supplied Action Templates 18-25
Developer-Supplied Target Templates 18-27
Assistant Functions and Methods 18-27
Developer-Supplied Functions and Methods 18-28
Application Base View Slots 18-28

Chapter 19 Built-in Applications and System Data 19-1

Names 19-2

About the Names Application 19-2
Names Compatibility 19-3

Using the Names Application 19-4
Adding a New Type of Card 19-4
Adding aNew Data ltem 19-4
Adding aNew Card Layout Style 19-5
Adding New Layouts to the Names Application 19-6
Using the Names Methods and Functions 19-6
Using the Names Soup 19-7
Using the Names Protos 19-7

XXii

Dates 19-8
About the Dates Application 19-8
Dates Compatibility 19-9
Using the Dates Application 19-10
Adding Mesetings or Events 19-11
Deleting Meetings and Events 19-12
Finding Meetings or Events 19-13
Moving Meetings and Events 19-14
Getting and Setting Information for Meetings or Events
Creating a New Meeting Type 19-17
Examples of Creating New Meeting Types 19-19
Miscellaneous Operations 19-20
Controlling the Dates Display 19-21
Using the Dates Soups 19-22
To Do List 19-22
About the To Do List Application 19-22
To Do List Compatibility 19-23
Using the To Do List Application 19-23
Creating and Removing Tasks 19-24
Accessing Tasks 19-24
Checking-Off a Task 19-25
Miscellaneous To Do List Methods 19-26
Using the To Do List Soup 19-26
Time Zones 19-27
About the Time Zones Application 19-27
Time Zone Compatibility 19-27
Using the Time Zone Application 19-28

Obtaining Information About a City or Country 19-28

Adding a City to a Newton Device 19-29
Using Longitude and L atitude Values 19-30
Setting the Home City 19-30
Notes 19-30

About the Notes Application 19-31
Notes Compatibility 19-31

Using the Notes Application 19-32
Creating New Notes 19-32
Adding Stationery to the Notes Application 19-33
Using the Notes Soup 19-33

19-15

XXiii

XXV

Fax Soup Entries 19-34
About Fax Soup Entries 19-34
Using Fax Soup Entries 19-34
Prefs and Formulas Rolls 19-35
About the Prefs and Formulas Rolls 19-35
Prefs and Formulas Compatibility 19-36
Using the Prefs and Formulas Interfaces 19-36
Adding aPrefsRoll Item 19-36
Adding a Formulas Roll Item 19-36
Auxiliary Buttons 19-36
About Auxiliary Buttons 19-36
Auxiliary Buttons Compatibility 19-36
Using Auxiliary Buttons 19-37
Icons and the Extras Drawer 19-38
About Icons and the Extras Drawer 19-38
Extras Drawer Compatibility 19-39
Using the Extras Drawer’s Interface for |con Management
Using Extras Drawer Cursors 19-40
Changing Icon Information 19-40
Adding a Soup Icon 19-40
Removing a Soup Icon 19-41
Creating a Script Icon 19-42
Using the Soupervisor Mechanism 19-43
System Data 19-44
About System Data 19-44
Using System Data 19-44

Functions for Accessing User Configuration Data 19-45
19-45

Storing Application Preferences in the System Soup
Summary 19-46
Constants and Variables 19-46
User Configuration Variables 19-47
Protos 19-48
Soup Formats 19-49
Functions and M ethods 19-53

19-39

Chapter 20 Localizing Newton Applications 20-1

About Localization 20-1
The Locale Panel and the International Frame 20-1
Locale and ROM Version 20-2
How L ocale Affects Recognition 20-2
Using the L ocalization Features of the Newton 20-3
Defining Language at Compile Time 20-3
Defining a Localization Frame 20-4
Using LocObj to Reference Localized Objects 20-4
Use ParamStr Rather Than “&” and “&&” Concatenation
Measuring String Widths at Compile Time 20-6
Determining Language at Run Time 20-6
Examining the Active Locale Bundle 20-6
Changing Locale Settings 20-7
Creating a Custom Locale Bundle 20-7
Adding a New Bundle to the System 20-8
Removing a Locale Bundle 20-8
Changing the Active Locale 20-9
Using a Localized Country Name 20-9
Summary: Customizing Locale 20-9
Localized Output 20-10
Date and Time Values 20-10
Currency Values 20-13
Summary of Localization Functions 20-14
Compile-Time Functions 20-14
Locale Functions 20-14
Date and Time Functions 20-14
Utility Functions 20-15

Chapter 21 Routing Interface 21-1

20-5

About Routing 21-1
The In/Out Box 21-1
The In Box 21-2
The Out Box 21-3
Action Picker 21-3

XXV

XXVi

Routing Formats 21-5
Current Format 21-8

Routing Compatibility 21-8
Print Formats 21-8

Using Routing 21-8

Providing Transport-Based Routing Actions 21-9
Getting and Verifying the Target Object 21-10
Getting and Setting the Current Format 21-11
Supplying the Target Object 21-12
Storing an Alias to the Target Object 21-13
Storing Multiple Items 21-14
Using the Built-in Overview Data Class 21-14
Displaying an Auxiliary View 21-15
Registering Routing Formats 21-16

Creating a Print Format 21-18
Page Layout 21-18
Printing and Faxing 21-19

Creating a Frame Format 21-21

Creating a New Type of Format 21-22

Providing Application-Specific Routing Actions 21-22
Performing the Routing Action 21-24
Handling Multiple Items 21-24
Handling No Target Item 21-25

Sending Items Programmeatically 21-26
Creating a Name Reference 21-27
Specifying a Printer 21-28

Opening a Routing Slip Programmatically 21-29

Supporting the Intelligent Assistant 21-30

Receiving Data 21-31
Automatically Putting Away Items 21-31
Manually Putting Away Items 21-33
Registering to Receive Foreign Data 21-34
Filing Items That Are Put Away 21-34

Viewing ltemsin the In/Out Box 21-34
View Definition Slots 21-35

Advanced Alias Handling 21-36

Summary of the Routing Interface 21-37
Constants 21-37
Data Structures 21-37

Protos 21-38
Functions and Methods 21-39
Application-Defined Methods 21-40

Chapter 22 Transport Interface 22-1

About Transports 22-1
Transport Parts 22-2
Item Frame 22-2
Using the Transport Interface 22-5
Providing a Transport Object 22-5
Installing the Transport 22-5
Setting the Address Class 22-6
Grouping Transports 22-7
Sending Data 22-8
Sending All Items 22-9
Converting an E-Mail Address to an Internet Address 22-9
Receiving Data 22-9
Handling Reguests When the Transport IsActive 22-12
Canceling an Operation 22-13
Obtaining an Item Frame 22-13
Completion and Logging 22-16
Storing Transport Preferences and Configuration
Information 22-17
Extending the In/Out Box Interface 22-17
Application Messages 22-19
Error Handling 22-20
Power-Off Handling 22-20
Providing a Status Template 22-21
Controlling the Status View 22-23
Providing a Routing Information Template 22-25
Providing a Routing Slip Template 22-26
Using protoFull RouteSlip 22-27
Using protoAddressPicker 22-31
Providing a Preferences Template 22-33
Summary of the Transport Interface 22-36
Constants 22-36
Protos 22-36
Functions and Methods 22-39

XXVii

Chapter 23 Endpoint Interface 231

About the Endpoint Interface 231
Asynchronous Operation 23-2
Synchronous Operation 23-3
Input 23-3
Data Forms 234
Template Data Form 235
Endpoint Options 23-7
Compatibility 23-7
Using the Endpoint Interface 23-8
Setting Endpoint Options 23-8
Initialization and Termination 23-10
Establishing a Connection 23-11
Sending Data 23-11
Receiving Data Using Input Specs 23-12
Specifying the Data Form and Target 23-13
Specifying Data Termination Conditions 23-14
Specifying Flags for Receiving 23-15
Specifying an Input Time-Out 23-16
Specifying Data Filter Options 23-16
Specifying Receive Options 23-17
Handling Normal Termination of Input 23-17
Periodically Sampling Incoming Data 23-18
Handling Unexpected Completion 23-18
Special Considerations 23-18
Receiving Data Using Alternative Methods 23-19
Streaming Data In and Out 23-20
Working With Binary Data 23-20
Canceling Operations 23-21
Asynchronous Cancellation 23-21
Synchronous Cancellation 23-22
Other Operations 23-22
Error Handling 23-23
Power-Off Handling 23-23
Linking the Endpoint With an Application 23-24
Summary of the Endpoint Interface 23-25
Constants and Symbols 23-25
Data Structures 23-26
Protos 23-28
Functions and Methods 23-30

XXViii

Chapter 24 Built-in Communications Tools 241
Seria Tool 24-1
Standard Asynchronous Serial Tool 24-1
Serial Tool with MNP Compression 24-4
Framed A synchronous Serial Tool 24-4
Modem Tool 24-6
Infrared Tool 24-8
AppleTak Tool 24-9
Resource Arbitration Options 24-10
AppleTak Functions 24-12
The Net Chooser 24-13
Summary 24-16
Built-in Communications Tool Service Option Labels 24-16
Options 24-16
Constants 24-18
Functions and Methods 24-21
Chapter 25 Modem Setup Service 251

About the Modem Setup Service 25-1
The Modem Setup User Interface 25-2
The Modem Setup Process 25-3
Modem Communication Tool Requirements 25-4
Defining aModem Setup 25-5
Setting Up General Information 25-5
Setting the Modem Preferences Option 25-5
Setting the Modem Profile Option 25-6
Setting the Fax Profile Option 25-7
Summary of the Modem Setup Service 25-9
Constants 259

XXX

Chapter 26 Utility Functions 261

Compatibility 26-2
New Functions 26-2
New Object System Functions 26-2
New String Functions 26-3
New Array Functions 26-3
New Sorted Array Functions 26-3
New Integer Math Functions 26-4
New Financia Functions 26-4
New Exception Handling Functions 26-4
New Message Sending Functions 26-4
New Deferred Message Sending Functions 26-4
New Data Stuffing Functions 26-5
New Functions to Get and Set Globals 26-5
New Debugging Functions 26-5
New Miscellaneous Functions 26-5
Enhanced Functions 26-6
Obsolete Functions 26-6
Summary of Functions and Methods 26-7
Object System Functions 26-7
String Functions 26-8
Bitwise Functions 26-9
Array Functions 26-9
Sorted Array Functions 26-9
Integer Math Functions 26-10
Floating Point Math Functions 26-10
Financial Functions 26-12
Exception Functions 26-12
Message Sending Functions 26-12
Deferred Message Sending Functions 26-12
Data Extraction Functions 26-13
Data Stuffing Functions 26-13
Getting and Setting Global Variables and Functions 26-13
Debugging Functions 26-13
Miscellaneous Functions 26-14

XXX

Appendix The Inside Story on Declare A1

Compile-Time Results A-1
Run-Time Results A-2

Glossary L1

Index IN-1

XXXi

Chapter 1

Chapter 3

Chapter 4

Figures and Tables

Overview

Figure 1-1 System software overview 1-2
Figure 1-2 Communications architecture 1-12
Figure 1-3 Using components 1-16

Views 3-1

Figure 3-1 Template hierarchy 3-3

Figure 3-2 View hierarchy 3-5

Figure 3-3 Screen representation of view hierarchy 3-6
Figure 3-4 View system coordinate plane 3-7
Figure 3-5 Points and pixels 3-7

Figure 3-6 Bounds parameters 3-11

Figure 3-7 View alignment effects 3-18
Figure 3-8 Transfer modes 3-22

Table 3-1 vi ewJust i fy constants 3-14

NewtApp Applications 4-1

Figure 4-1
Figure 4-2

Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6

Figure 4-7

Figure 4-8
Figure 4-9

The main protos in a NewtApp-based application 4-3
A roll-based application (left) versus a card-based
application 4-6

Calls is an example of a page-based application 4-7
Multiple entries visible simultaneously 4-8

An Information slip 4-9

The smart name view and system-provided

people picker 4-11

The message resulting from ani | value for
forceNewEntry 4-17

The overview slots 4-17

The information button and picker. 4-20

XXXii

Chapter 5 Stationery 5-1

Figure 5-1 The IOU extension in the New picker 5-3

Figure 5-2 The IOU extension to the Notes application 5-3

Figure 5-3 The Show menu presents different views of

application data 5-4

Figure 5-4 The default viewDef view template 5-12
Chapter 6 Pickers, Pop-up Views, and Overviews 6-1

Figure 6-1 A pr ot oPopupBut t on example 6-5

Figure 6-2 A pr ot oPopl nPl ace example 6-5

Figure 6-3 A prot oLabel Pi cker example 6-5

Figure 6-4 A prot oPi cker example 6-6

Figure 6-5 A pr ot oGener al Popup example 6-6

Figure 6-6 A prot oText Li st example 6-7

Figure 6-7 A prot oTabl e example 6-7

Figure 6-8 A prot oCount r yPi cker example 6-9

Figure 6-9 A prot oProvi ncePi cker example 6-9

Figure 6-10 A prot oSt at ePi cker example 6-9

Figure 6-11 A prot oWor | dPi cker example 6-10

Figure 6-12 A prot oText Pi cker example 6-10

Figure 6-13 A pr ot oDat eText Pi cker example 6-11

Figure 6-14 A prot oDat eDur at i onText Pi cker example 6-12

Figure 6-15 A pr ot oDat eNTi neText Pi cker example 6-13

Figure 6-16 A prot oTi neText Pi cker example 6-13

Figure 6-17 A prot oDur ati onText Pi cker example 6-14

Figure 6-18 A prot oTi neDel t aText Pi cker example 6-14

Figure 6-19 A pr ot oMapText Pi cker example 6-15

Figure 6-20 A pr ot oUSst at esText Pi cker example 6-15

Figure 6-21 AprotoGitiesTextPi cker example 6-16

Figure 6-22 A prot oLongLat Text Pi cker example 6-16

Figure 6-23 A pr ot oDat ePopup example 6-17

Figure 6-24 A pr ot oDat ePi cker example 6-17

Figure 6-25 A pr ot oDat eNTi nePopup example 6-18

Figure 6-26 A pr ot oDat el nt er val Popup example 6-18

Figure 6-27 A prot oMul ti Dat ePopup example 6-19

Figure 6-28 A pr ot oYear Popup example 6-19

Figure 6-29 A pr ot oTi mePopup example 6-19

Figure 6-30 A pr ot oAnal ogTi nePopup example 6-20

Figure 6-31 A prot oTi neDel t aPopup example 6-20

Figure 6-32 A prot oTi el nt er val Popup example 6-20

Figure 6-33 A pr ot oNurrber Pi cker example 6-21

Figure 6-34 A prot oPi ct | ndexer example 6-21

XXXV

Chapter 7

Figure 6-35
Figure 6-36
Figure 6-37
Figure 6-38
Figure 6-39
Figure 6-40
Figure 6-41
Figure 6-42
Figure 6-43
Figure 6-44
Figure 6-45
Figure 6-46
Figure 6-47
Figure 6-48

Table 6-1
Table 6-2
Table 6-3

A prot oOver vi ewexample 6-22

A pr ot oSoupOver vi ewexample 6-23

A protoLi st Pi cker example 6-24

A Prot oLi st Pi cker example 6-26
Creating a new name entry 6-27
Highlighted row 6-27

Selected row 6-27

Pop-up view displayed over list 6-28

Slip displayed for gathering input 6-28

A prot oRol | example 6-35

A pr ot oRol | Br owser example 6-36
Example of an expandable text outline 6-36
Example of a month view 6-37

Cell highlighting example for pr ot oPi cker 6-40

Item frame for strings and bitmaps 6-38
Item frame for string with icon 6-38
Item frame for two-dimensional grid 6-39

Controls and Other Protos 7-1

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22

A prot oHori zont al 2DScr ol | er view 7-2
AprotoLeftR ght Scrol | er view 7-2

A pr ot oUpDownScr ol | er view 7-3

A prot oHori zont al UpDownScr ol | er view 7-3
A pr ot oText But t on view 7-6

A pr ot oPi ct ur eBut t on view 7-7

A pr ot ol nf oBut t on view 7-7
AprotoOrientation view 7-7

A cluster of pr ot oRadi oBut t ons 7-8

A cluster of pr ot oPi ct Radi oButt ons 7-8
A pr ot od oseBox view 7-8

A prot oLar geC oseBox view 7-9

A pr ot oCheckBox view 7-9

A pr ot oRCheckBox view 7-9

A pr ot 0AZTabs view 7-11

A pr ot 0AZVer t Tabs view 7-11

A protoSlider view 7-12

A pr ot oGauge view 7-12

A prot oLabel edBat t er yGauge view 7-12
A cl GaugeVi ewview 7-13

A protobDigital d ock view 7-14

A pr ot oNewSet Cl ock view 7-15

XXXV

Chapter 8

XXXVi

Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 7-31
Figure 7-32

Table 7-1

A pr ot oAMPMCl ust er view 7-15
A pr ot oDr agger view 7-16

A pr ot oDr agNGo view 7-16

A pr ot od ance view 7-17
AprotoStaticText view 7-17
A pr ot oBor der view 7-18

A protoDi vi der view 7-18
AprotoTitl e view 7-18

A prot oSt at us view 7-19

A prot oSt at usBar view 7-19

Scroller bounds frame slots 7-4

Text and Ink Input and Display 8-1

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 8-13
Figure 8-14
Figure 8-15

Table 8-1
Table 8-2

Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8

The Punctuation pop-up menu 8-5

An example of a pr ot oLabel | nput Li ne 8-13
The Recognition menu 8-15

Resized and recognized ink 8-16

A paragraph view containing an ink word
and text 8-25

The built-in alphanumeric keyboard 8-26
The built-in numeric keyboard 8-27

The built-in phone keyboard 8-27

The built-in time and date keyboard 8-27

An example of a pr ot oKeyboar d 8-29
The keyboard button 8-29

The small keyboard button 8-30

A generic keyboard view 8-31

Keyboard codes 8-34

Independent tabbing orders within a parent view

Views and protos for text input and display 8-4

Vi ewSt at i onery slot value for cl Edi t Vi ew
children 8-9

Font family symbols 8-18
Font style (face) values 8-18
Built-in font constants 8-19
Font packing constants 8-21
Rich string functions 8-24
Key descriptor constants 8-34

8-37

Chapter 9 Recognition 9-1

Figure 9-1 Recognizers create units from input strokes 9-5
Figure 9-2 Recognition-related view flags 9-9

Figure 9-3 Text-corrector picker 9-14

Figure 9-4 Handwriting Recognition preferences 9-16
Figure 9-5 Text Editing Settings slip 9-17

Figure 9-6 Fine Tuning handwriting preferences slips 9-17
Figure 9-7 Handwriting Settings slip 9-18

Figure 9-8 Use of pr ot oRecToggl e view in the Notes

application 9-19

Chapter 10 Recognition: Advanced Topics 10-1

Figure 10-1 Example of pr ot oChar Edi t view 10-4

Figure 10-2 User interface to deferred recognition, with
inverted ink 10-6

Figure 10-3 Single-character editing box specified by r cBasel nf o
frame 10-13

Figure 10-4 Two-dimensional array of input boxes specified by
rcGidl nf o frame 10-14

Figure 10-5 OnerecToggl e controls all views 10-21

Figure 10-6 Each recToggl e view controls a single input
view 10-21

Figure 10-7 Example of a pr ot oChar Edi t view 10-36

Table 10-1 Recognition failure in paragraph or edit view controlled
by recToggl e 10-12

Table 10-2 Symbols appearing in the _r ecogPopup slot 10-22

Chapter 11 Data Storage and Retrieval 11-1

Figure 11-1 Stores, soups and union soups 11-4

Figure 11-2 An index provides random access and imposes
order 11-11

Figure 11-3 Using begi nKey and endKey values to specify an
index subrange 11-12

Figure 11-4 Using begi nExcl Key and endExcl Key values to
specify a subrange 11-13

Figure 11-5 Cursor presents discontiguous index key values
contiguously 11-16

Figure 11-6 Cursor operations on descending index 11-46

Figure 11-7 Specifying ends of a descending index 11-47

Table 11-1 Effect of functions and methods on entry cache 11-63

XXXVii

Chapter 12

Chapter 13

Chapter 15

Chapter 16

XXXViil

Special-Purpose Objects for Data Storage and Retrieval 12-1

Table 12-1

Parts and type identifiers 12-4

Drawing and Graphics 13-1

Figure 13-1 A line drawn with different bit patterns and
pen sizes 13-3

Figure 13-2 A rectangle 13-3

Figure 13-3 An oval 13-4

Figure 13-4 An arc and a wedge 13-4

Figure 13-5 A rounded rectangle 13-5

Figure 13-6 A polygon 13-6

Figure 13-7 A region 13-6

Figure 13-8 A simple picture 13-7

Figure 13-9 Example of nested shape arrays 13-11

Figure 13-10 Example of Vi ewl nt oBi t nap method 13-19

Figure 13-11 Example of MungeBi t map method 13-19

Table 13-1 Summary of drawing results 13-11

Filing 151

Figure 15-1 Two examples of filing button views 15-2

Figure 15-2 Filing slip 15-3

Figure 15-3 Creating a local folder 15-4

Figure 15-4 Filing slip without external store 15-5

Figure 15-5 Filing slip for ' onl yCar dRout i ng 15-5

Figure 15-6 A pr ot oNewFol der Tab view 15-6

Figure 15-7 A pr ot oCl ockFol der Tab view 15-7

Figure 15-8 Choosing a filing filter 15-8

Find 16-1

Figure 16-1 The system-supplied Find slip 16-2

Figure 16-2 Specifying text or date searches in the Find slip 16-2

Figure 16-3 A local Find operation 16-3

Figure 16-4 Searching selected applications 16-3

Figure 16-5 Progress slip 16-4

Figure 16-6 The Find overview 16-5

Figure 16-7 Find status message 16-5

Figure 16-8 Strings used in a Find overview 16-8

Figure 16-9 The ShowFoundl t emmethod displays the view of an
overview item 16-9

Figure 16-10 Typical status message 16-24

Table 16-1 Overview of ROM _SoupFi nder methods 16-13
Chapter 17 Additional System Services 17-1

Figure 17-1 User alert 17-3

Figure 17-2 Alarm slip with Snooze button 17-4

Figure 17-3 A view based on protoPeriodicAlarmEditor 17-4

Figure 17-4 Busy cursor 17-5

Figure 17-5 Notify icon 17-5

Figure 17-6 Progress slip with barber pole gauge 17-6

Figure 17-7 A user alert 17-11

Figure 17-8 Built-in status view configurations 17-20
Chapter 18 Intelligent Assistant 18-1

Figure 18-1 Assist slip 18-3

Figure 18-2 The Please picker 18-3

Figure 18-3 Calling task slip 18-4

Figure 18-4 Simplified overview of the Assistant’s matching

process 18-7

Chapter 19 Built-in Applications and System Data 19-1
Figure 19-1 Names application Card and All Info views 19-3
Figure 19-2 Dates application Day and Day’s Agenda views 19-9
Figure 19-3 The To Do List application 19-23
Figure 19-4 The Time Zones application 19-27
Figure 19-5 Time Zones application’s All Info view 19-28
Figure 19-6 Notes note and Checklist views 19-31
Figure 19-7 Note added using NewNot e method 19-33
Figure 19-8 Custom Prefs and Formulas Panels 19-35
Figure 19-9 The Notes application with and without an auxiliary

button 19-37

Figure 19-10 The information slips for an application’s soup that do

and do not support the soupervisor mechanism (note
extra filing button) 19-39

XXXiX

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Xl

Localizing Newton Applications 20-1

Figure 20-1

Table 20-1

The Locale settings in Preferences 20-2

Using the ki ncl udeAl | El enent s constant 20-13

Routing Interface 21-1

Figure 21-1
Figure 21-2
Figure 21-3
Figure 21-4
Figure 21-5

Table 21-1

In Box and Out Box overviews 21-2

Action picker 21-3

Transport selection mechanism for action picker 21-6
Format picker in routing slip 21-7

Auxiliary view example 21-15

Routing data types 21-7

Transport Interface 22-1

Figure 22-1
Figure 22-2
Figure 22-3
Figure 22-4
Figure 22-5
Figure 22-6
Figure 22-7
Figure 22-8
Figure 22-9
Figure 22-10

Table 22-1

Status view subtypes 22-22

Routing information view 22-26

prot oFul | Rout eSl i p view 22-27

Complete routing slip 22-29

pr ot oPeopl ePi cker view 22-31

Address picker with remembered names 22-32
Address picker set up by Intelligent Assistant 22-32
Information picker and preferences view 22-33
prot oTransport Pr ef s view 22-34

Print preferences 22-35

Status view subtypes 22-21

Endpoint Interface 23-1

Table 23-1
Table 23-2

Data form applicability 23-5
Input spec slot applicability 23-13

Chapter 24

Chapter 25

Chapter 26

Appendix

Built-in Communications Tools 24-1

Figure 24-1 Default serial framing 24-5

Figure 24-2 NetChooser view while searching 24-14
Figure 24-3 NetChooser view displaying printers 24-14
Table 24-1 Summary of serial options 24-2

Table 24-2 Summary of serial tool with MNP options 24-4
Table 24-3 Summary of framed serial options 24-5
Table 24-4 Summary of modem options 24-7

Table 24-5 Summary of Infrared Options 24-8

Table 24-6 Summary of AppleTalk options 24-10

Table 24-7 Resource arbitration options 24-11

Table 24-8 AppleTalk functions 24-13

Modem Setup Service 25-1

Figure 25-1 Modem preferences view 25-3

Table 25-1 Summary of configuration string usage 25-7

Utility Functions 26-1

Table 26-1 Summary of copying functions 26-2

The Inside Story on Declare A1

Figure A-1 Declare example A-3

xli

PREFACE

About This Book

This book, Newton Programmer’s Guide, is the definitive guide to Newton
programming, providing conceptual information and instructions for using the
Newton application programming interfaces.

This book is a companion to Newton Programmer’s Reference, which provides
comprehensive reference documentation for the routines, system prototypes, data
structures, constants, and error codes defined by the Newton system. Newton
Programmer’s Reference is included on the CD-ROM that accompanies this book.

Who Should Read This Book

This guide is for anyone who wants to write NewtonScript programs for the
Newton family of products.

Before using this guide, you should read Newton Toolkit User’s Guide to learn how
to install and use Newton Toolkit, which is the development environment for
writing NewtonScript programs for Newton. You may also want to read The
NewtonScript Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is used throughout
the Newton Programmer’s Guide.

To make best use of this guide, you should already have a good understanding of
object-oriented programming concepts and have had experience using a high-level
programming language such as C or Pascal. It is helpful, but not necessary, to have
some experience programming for a graphic user interface (like the Macintosh
desktop or Windows). At the very least, you should already have extensive
experience using one or more applications with a graphic user interface.

Related Books

This book isone in aset of books available for Newton programmers. You'll also
need to refer to these other booksin the set:

= Newton Toolkit User’s Guide. This book comes with the Newton Toolkit
development environment. It introduces the Newton devel opment environment
and shows how to develop applications using Newton Toolkit. You should read
this book first if you are a new Newton application devel oper.

xliii

REFACE

The NewtonScript Programming Language. This book comes with the Newton
Toolkit development environment. It describes the NewtonScript programming
language.

Newton Book Maker User’s Guide. This book comes with the Newton Tool kit
development environment. It describes how to use Newton Book Maker and
Newton Toolkit to make Newton digital books and to add online help to Newton
applications.

Newton 2.0 User Interface Guidelines. This book contains guidelines to help
you design Newton applications that optimize the interaction between people
and Newton devices.

Newton Programmer’s Reference CD-ROM

xliv

This book is accompanied by a CD-ROM disc that contains the complete text of
Newton Programmer’s Reference. Newton Programmer’s Referenceis the
comprehensive reference to the Newton programming interface. It documents all
routines, prototypes, data structures, constants, and error codes defined by the
Newton system for use by NewtonScript developers.

The companion CD-ROM includes three el ectronic versions of Newton
Programmer’s Reference. The CD-ROM contains these items, among others:

The complete Newton Programmer’s Reference in QuickView format for the
Mac OS — the same format used by the Macintosh Programmer’s Tool box
Assistant. In thisformat, you can use the extremely fast full-text searching
capabilities and ubiquitous hypertext jumps to find reference information quickly.

The complete Newton Programmer’'s Reference in Windows Help format. This
format provides quick and convenient access to the reference information for
devel opers working on Windows platforms.

The complete Newton Programmer’s Reference in Adobe Acrobat format. This
format provides afully formatted book with page-numbered table of contents,
index, and cross-references. You can print all or portions of the book, and you can
also view it online. When viewing online, you can use the indexed search facilities
of Adobe Acrobat Reader 2.1 for fast lookup of any information in the book.

The companion CD-ROM also includes an Adobe Acrobat version of this book,
Newton Programmer’s Guide, and a demo version of the Newton Toolkit
development environment for the Mac OS.

PREFACE

Sample Code

The Newton Toolkit development environment, from Apple Computer, includes
many sample code projects. You can examine these samples, learn from them, and
experiment with them. These sample code projects illustrate most of the topics
covered in this book. They are an invaluable resource for understanding the topics
discussed in this book and for making your journey into the world of Newton
programming an easier one.

The Newton Devel oper Technical Support team continually revises the existing
samples and creates new sample code. The latest sample code isincluded each
quarter on the Newton Developer CD, which is distributed to all Newton Devel oper
Program members and to subscribers of the Newton monthly mailing. Sample
code is updated on the Newton Devel opment side on the World Wide Web (ht t p: /
/ dev. i nf o. appl e. com newt on) shortly after it is released on the Newton
Developer CD. For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section “Developer Products and Support,”
on page xlvii.

The code samplesin this book show methods of using various routines and
illustrate techniques for accomplishing particular tasks. All code samples have been
compiled and, in most cases, tested. However, Apple Computer does not intend that
you use these code samplesin your application.

To make the code samplesin this book more readable, only limited error handling
is shown. You need to devel op your own techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds of information.

Special Fonts

This book uses the following special fonts:

= Boldface. Key terms and concepts appear in boldface on first use. These terms
are also defined in the Glossary.

= Courier typeface. Codelistings, code snippets, and special identifiersin
the text such as predefined system frame names, slot names, function names,
method names, symbols, and constants are shown in the Courier typeface to
distinguish them from regular body text. If you are programming, items that
appear in Courier should be typed exactly as shown.

xlv

PREFACE

= [talic typeface. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which you must replace
with your own names. The names of other books are also shown initalic type,
and rarely, this style is used for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the word “ click”
sometimes appears as part of the name of a method or variable, asin

ViewC i ckScri pt orButtond i ckScri pt. Thismay lead you to believe that
the text refers to mouse clicks. It does not. Wherever you see the word

“click” used thisway, it refers to atap of the pen on the Newton screen (whichis
somewhat similar to the click of amouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development environment in conjunction
with this book, you may notice that this book displays the code for aframe (such as
aview) differently than NTK does.

In NTK, you can see the code for only asingle frame slot at atime. In this book,
the code for aframe is presented all at once, so you can see dl of the slotsin the
frame, likethis:

{ viewd ass: clView,
vi ewBounds: Rel Bounds(20, 50, 94, 142),
vi ewFl ags: vNoFI ags,
vi ewFormat : vfFill White+vfFraneBl ack+vfPen(1),
vi ewdustify: vjCenterH,

Vi ewSet upDoneScri pt: func()
: Updat eDi spl ay(),

Updat eDi spl ay: func()
Set Val ue(di spl ay, 'text, value);

b

If while working in NTK, you want to create a frame that you see in the book,
follow these steps:

1. Onthe NTK template palette, find the view class or proto shown in the book.
Draw out aview using that template. If the frame shown in the book contains a
_pr ot o dlot, use the corresponding proto from the NTK template palette. If the
frame shown in the book containsavi ewCl ass dlot instead of a_pr ot o slot,
use the corresponding view class from the NTK template palette.

xlvi

PREFACE

2. Edit thevi ewBounds slot to match the values shown in the book.

3. Add each of the other slots you see listed in the frame, setting their values to the
values shown in the book. Slots that have values are attribute slots, and those
that contain functions are method sl ots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple computer
platforms. Customers receive the Apple Devel oper Catalog featuring al current
versions of Apple development tools and the most popular third-party development
tools. ADC offers convenient payment and shipping options, including site
licensing.

To order products or to request a complimentary copy of the Apple Devel oper
Catalog, contact

Apple Developer Catalog
Apple Compuiter, Inc.
PO. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511
AppleLink ORDER.ADC
Internet order.adc@applelink.apple.com
World Wide Web http://www.devcatal og.apple.com

If you provide commercia products and services, call 408-974-4897 for
information on the devel oper support programs available from Apple.

For Newton-specific information, see the Newton devel oper World Wide Web page
at: http://dev.info.appl e.com newt on

Xlvii

PREFACE

Undocumented System Software Objects

When browsing in the NTK Inspector window, you may see functions, methods,
and data objects that are not documented in this book. Undocumented functions,
methods, and data objects are not supported, nor are they guaranteed to work in

future Newton devices. Using them may produce undesirable effects on current
and future Newton devices.

xIviii

CHAPTER 1

Oveview

This chapter describes the general architecture of the Newton system software,
which is divided into three levels, as shown in Figure 1-1 (page 1-2).

The lowest level includes the operating system and the low-level communications
system. These parts of the system interact directly with the hardware and perform
basic operations such as memory management, input and output, and task switching.
NewtonScript applications have no direct access to system services at thislevel.

The middle level consists of system services that NewtonScript applications can
directly access and interact with to accomplish tasks. The system provides
hundreds of routines that applications can use to take advantage of these services.

At the highest level are components that applications can use to construct their user
interfaces. These reusable components neatly package commonly needed user
interface objects such as buttons, lists, tables, input fields, and so on. These
components incorporate NewtonScript code that makes use of the system services
in the middle level, and that an application can override to customize an object.

Operating System

The Newton platform incorporates a sophisticated preemptive, multitasking
operating system. The operating system is amodular set of tasks performing
functions such as memory management, task management, scheduling, task to task
communications, input and output, power management, and other low-level
functions. The operating system manages and interacts directly with the hardware.

A significant part of the operating system is concerned with low-level communication
functions. The communication subsystem runs as a separate task. It manages the
hardware communication resources available in the system. These include serial,
fax modem, AppleTak networking, and infrared. The communication architecture
is extensible, and new communication protocols can be installed and removed at
run time, to support additional services and external devices that may be added.

Operating System 1-1

CHAPTER 1

Overview

Figure 1-1 System software overview

1-2

Application Components

NewtonScript Application Program

User Interface Components

1|

System Services
Find
Filing
Sound
Book Reader
Routing and Transport
Endpoint Communications
Imaging and Printing
Intelligent Assistant
Stationery
Text Input and Recognition
View System

Object Storage System

| L

"z

Operating System
Low-level

System System

L ||

Operating <:> Communications

Il I

Newton Hardware

Operating System

CHAPTER 1

Overview

Another operating system task of interest is the Inker. The Inker task is responsible
for gathering and displaying input from the electronic tablet overlaying the screen
when the user writes on the Newton. The Inker exists as a separate task so that the
Newton can gather input and display electronic ink at the same time as other
operations are occurring.

All Newton applications, including the recognition system, built-in applications,
and applications you develop, run in asingle operating system task, called the
Application task.

NewtonScript applications have no direct access to the operating system level of
software. Accessto certain low-level resources, such as communications, is
provided by higher-level interfaces.

Memory

It is helpful to understand the use of random access memory (RAM) in the system,
since this resource is shared by the operating system and all applications. Newton
RAM isdivided into separate domains, or sections, that have controlled access.
Each domain hasits own heap and stack. It isimportant to know about three of
these domains:

= The operating system domain. This portion of memory isreserved for use by the
operating system. Only operating system tasks have access to this domain.

= The storage domain. This portion of memory is reserved for permanent,
protected storage of user data. All soups, which store the data, reside here, as
well as any packages that have been downloaded into the Newton. To protect the
datain the storage domain from inadvertent damage, it can only be accessed
through the object storage system interface, described in Chapter 11, “Data
Storage and Retrieval.” If the user adds a PCMCIA card containing RAM, Flash
RAM, or read-only memory (ROM) devices, the memory on the card is used to
extend the size of the storage domain.

The storage domain occupies special persistent memory; that is, this memory is
maintained even during a system reset. This protects user data, system software
updates, and downloaded packages from being lost during system resets. The
used and free space in the storage domain is reported to the user in the Memory
Info dlip in the Extras Drawer.

= The application domain. This portion of memory is used for dynamic memory
alocation by the handwriting recognizers and all Newton applications. A fixed
part of thisdomain is alocated to the NewtonScript heap. The NewtonScript
heap isimportant because most objects allocated as a result of your NewtonScript
application code are allocated from the NewtonScript heap. These are the only
memory objects to which you have direct access. The NewtonScript heap is
shared by all applications.

Operating System 1-3

CHAPTER 1

Overview

The system performs automatic memory management of the NewtonScript heap.
You don’'t need to worry about memory allocation or disposal in an application.
The system automatically allocates memory when you create a new object in
NewtonScript. When references to an object no longer exist, it is freed during the
next garbage collection cycle. The system performs garbage collection
automatically when it needs additional memory.

The Newton operating system optimizes use of memory by using compression.
Various parts of memory are compressed and decompressed dynamically and
transparently, as needed. This occurs at alow level, and applications don't need to
be concerned with these operations.

Packages

A package is the unit in which software isinstalled on and removed from the
Newton. Packages can combine multiple pieces of software into asingle unit. The
operating system manages packages, which can be installed from PCMCIA cards,
from a serial connection to a desktop computer, a network connection, or via
modem. When a package comes into the Newton system, the system automatically
opensit and dispatches its parts to appropriate handlersin the system.

A package consists of a header, which contains the package name and other
information, and one or more parts, which contain the software. Parts can include
applications, communication drivers, fonts, and system updates (system software
code loaded into RAM that overrides or extends the built-in ROM code). A
package can also export objects for use by other packages in the system, and can
import (use) objects that are exported by other packages.

Packages are optionally stored compressed on the Newton. Compressed packages
occupy much less space (roughly half of their uncompressed size), but applications
in compressed packages may execute somewhat slower and use dightly more
battery power, because of the extrawork required to decompress them when they
are executed.

For more information about packages, refer to Chapter 11, “ Data Storage and
Retrieval

System Services

The Newton system software contains hundreds of routines organized into
functional groups of services. Your application can use these routines to accomplish
specific tasks such as opening and closing views, storing and retrieving data,
playing sounds, drawing shapes, and so on. This section includes brief descriptions
of the more important system services with which your application will need to
interact. Note that communications services are described in a separate section
following this one.

System Services

CHAPTER 1

Overview

Object Storage System

This system is key to the Newton information architecture. The object storage
system provides persistent storage for data.

Newton uses a unified data model. This meansthat all data stored by all applications
uses a common format. Data can easily be shared among different applications,
with no tranglation necessary. This allows seamless integration of applications with
each other and with system services.

Datais stored using a database-like model. Objects are stored as frames, which are
like database records. A frame contains named slots, which hold individual pieces
of data, like database fields. For example, an address card in the Names application
is stored as aframe that contains a slot for each item on the card: name, address,
city, state, zip code, phone number, and so on.

Frames are flexible and can represent awide variety of structures. Slotsin asingle
frame can contain any kind of NewtonScript object, including other frames, and
slots can be added or removed from frames dynamically. For a description of
NewtonScript objects, refer to The NewtonScript Programming Language.

Groups of related frames are stored in soups, which are like databases. For example,
all the address cards used by the Names application are stored in the Names soup,
and all the notes on the Notepad are stored in the Notes soup. All the frames stored
in a soup need not contain identical slots. For example, some frames representing
address cards may contain a phone number slot and others may not.

Soups are automatically indexed, and applications can create additional indexes on
slotsthat will be used as keys to find data items. You retrieve items from a soup by
performing a query on the soup. Queries can be based on an index value or can
search for astring, and can include additional constraints. A query resultsina

cur sor—an object representing a position in the set of soup entries that satisfy the
query. The cursor can be moved back and forth, and can return the current entry.

Soups are stored in physical repositories, called stores. Stores are akin to disk
volumes on personal computers. The Newton always has at |east one store—the
internal store. Additional stores reside on PCMCIA cards.

The object storage system interface seamlessly merges soups that have the same
name on internal and external storesin aunion soup. Thisisavirtual soup that
provides an interface similar to areal soup. For example, some of the address cards
on aNewton may be stored in the internal Names soup and some may be stored in
another Names soup on a PCMCIA card. When the card isinstalled, those names
in the card soup are automatically merged with the existing internal names so the
user, or an application, need not do any extrawork to access those additional
names. When the card is removed, the names simply disappear from the card file
union soup.

System Services 1-5

CHAPTER 1

Overview

The object storage system is optimized for small chunks of dataand is designed to
operate in tight memory constraints. Soups are compressed, and retrieved entries
are not allocated on the NewtonScript heap until aslot in the entry is accessed.

You can find information about the object storage system interface in Chapter 11,
“Data Storage and Retrieval ”

View System

Views are the basic building blocks of most applications. A view issimply a
rectangular area mapped onto the screen. Nearly every individual visual item you
see on the screen is aview. Views display information to the user in the form of
text and graphics, and the user interacts with views by tapping them, writing in
them, dragging them, and so on. A view is defined by aframe that contains slots
specifying view attributes such as its bounds, fill color, alignment relative to other
views, and so on.

The view system iswhat you work with to manipulate views. There are routinesto
open, close, animate, scroll, highlight, and lay out views, to name just afew
operations you can do. For basic information about views and descriptions of all

the routines you can use to interact with the view system, refer to Chapter 3, “Views”

An application consists of acollection of views all working together. Each application
has an application base view from which all other viewsin the application
typically descend hierarchically. In turn, the base view of each application installed
in the Newton descends from the system root view. (Think of the hierarchy asa
tree structure turned upside down, with the root at the top.) Thus, each application
base view isachild of the root view. We call aview in which child views exist the
parent view of those child views. Note that occasionally, an application may also
include views that don’t descend from the base view but are themselves children of
theroot view.

The system includes severa different primitive view classes from which all views
are ultimately constructed. Each of these view classes has inherently different
behavior and attributes. For example, there are view classes for views that contain
text, shapes, pictures, keyboards, analog gauges, and so on.

As an application executes, its view frames receive messages from the system and
exchange messages with each other. System messages provide an opportunity for a
view to respond appropriately to particular events that are occurring. For example,
the view system performs default initialization operations when aview is opened.
It also sends the view a Vi ewSet upFor nScr i pt message. If the view includes a
method to handle this message, it can perform its own initialization operationsin
that method. Handling system messages in your application is optional since the
system performs default behaviors for most events.

System Services

CHAPTER 1

Overview

Text Input and Recognition

The Newton recognition system uses a sophi sticated multiple-recognizer
architecture. There are recognizers for text, shapes, and gestures, which can be
simultaneously active (this is application-dependent). An arbitrator examines the
results from simultaneously active recognizers and returns the recognition match
that has the highest confidence.

Recognition is modeless. That is, the user does not need to put the systemin a
special mode or use aspecial dialog box in order to write, but can write in any
input field at any time.

The text recognizers can handle printed, cursive, or mixed handwriting. They can
work together with built-in dictionaries to choose words that accurately match what
the user has written. The user can also add new wordsto a personal dictionary.

Depending on whether or not atext handwriting recognizer is enabled, users can
enter handwritten text that is recognized or not. Unrecognized text is known asink
text. Ink text can still be manipulated like recognized text—words can be inserted,
deleted, moved around, and reformatted—and ink words can be intermixed with
recognized words in a single paragraph. Ink words can be recognized later using
the deferred recognition capability of the system.

The shape recognizer recognizes both simple and complex geometric objects,
cleaning up rough drawings into shapes with straight lines and smooth curves. The
shape recognizer also recognizes symmetry, using that property, if present, to help
it recognize and display objects.

For each view in an application, you can specify which recognizers are enabled and
how they are configured. For example, the text recognizer can be set to recognize
only names, or names and phone numbers, or only words in a custom dictionary
that you supply, among other choices.

Most recognition events are handled automatically by the system view classes, so
you don’'t need to do anything in your application to handle recognition events,
unless you want to do something special. For example, when a user writes aword
in atext view, that view automatically passes the strokes to the recognizer, accepts
the recognized word back, and displays the word. In addition, the view automatically
handles corrections for you. The user can double-tap aword to pop up alist of
other possible matches for it, or to use the keyboard to correct it.

For information on methods for accepting and working with text input, refer to
Chapter 8, “Text and Ink Input and Display.” For information on controlling
recognition in views and working with dictionaries, refer to Chapter 9, * Recognition.”

System Services 1-7

CHAPTER 1

Overview

Stationery

Stationery is acapability of the system that allows applications to be extended by
other developers. The word “stationery” refers to the capability of having different
kinds of datawithin a single application (such as plain notes and outlines in the
Notepad) and/or to the capability of having different ways of viewing the same data
(such asthe Card and All Info views in the Namesfile). An application that supports
stationery can be extended either by adding a new type of datato it (for example,
adding recipe cards to the Notepad), or by adding a new type of viewer for existing
data (a new way of viewing Namesfile entries or a new print format, for example).

To support stationery, an application must register with the system aframe, called a
data definition, that describes the data with which it works. The different data
definitions available to an application are listed on the pop-up menu attached to the
New button. In addition, an application must register one or more view definitions,
which describe how the datais to be viewed or printed. View definitions can
include simple read-only views, editor-type views, or print formats. The different
view definitions available in an application (not including print formats) are listed
on the pop-up menu attached to the Show button.

Stationery iswell integrated into the NewtApp framework, so if you use that frame-
work for your application, using stationery is easy. The printing architecture also
uses stationery, so all application print formats are registered as akind of stationery.

For more information about using stationery, see Chapter 5, “ Stationery.”

Intelligent Assistant

A key part of the Newton information architecture is the Intelligent Assistant. The
Intelligent Assistant is a system service that attempts to complete actions for the
user according to deductions it makes about the task that the user is currently
performing. The Assistant is always instantly available to the user through the
Assist button, yet remains nonintrusive.

The Assistant knows how to complete several built-in tasks; they are Scheduling
(adding meetings), Finding, Reminding (adding To Do items), Mailing, Faxing,
Printing, Calling, and getting time information from the Time Zones map. Each of
these tasks has severa synonyms; for example, the user can write “call,” “ phone,”
“ring,” or “dial” to make a phone call.

Applications can add new tasks so that the Assistant supports their special capabilities
and services. The Newton unified data model makes it possible for the Assistant to
access data stored by any application, thus alowing the Assistant to be well integrated
in the system.

For details on using the Intelligent Assistant and integrating support for it into your
application, see Chapter 18, “Intelligent Assistant.”

System Services

CHAPTER 1

Overview

Imaging and Printing

At the operating system level, the Newton imaging and printing software is based

on an object-oriented, device-independent imaging model. The imaging model is
monochrome since the current Newton screen is a black-and-white screen.

NewtonScript application programs don't call low-level imaging routines directly
to do drawing or image manipulation. In fact, most drawing is handled for
applications by the user interface components they incorporate, or when they call
other routines that display information. However, there is a versatile set of
high-level drawing routines that you can call directly to create and draw shapes,
pictures, bitmaps, and text. When drawing, you can vary the pen thickness, pen
pattern, fill pattern, and other attributes. For details on drawing, refer to Chapter 13,
“Drawing and Graphics.”

The Newton text imaging facility supports Unicode directly, so the system can be
easily localized to display languages using different script systems. The systemis
extensible, so it's possible to add additional fonts, font engines, and printer drivers.

The high-level interface to printing on the Newton uses amodel identical to that
used for views. Essentially, you design a special kind of view called a print format
to specify how printed information is to be laid out on the page. Print formats use a
unique view template that automatically adjusts its size to the page size of the
printer chosen by the user. When the user prints, the system handles al the details
of rendering the views on the printer according to the layout you specified.

The Newton offers the feature of deferred printing. The user can print even though
he or she is not connected to a printer at the moment. An object describing the print
job is stored in the Newton Out Box application, and when a printer is connected
later, the user can then select that print job for printing. Again, this feature is
handled automatically by the system and requires no additional application
programming work.

For information on how to add printing capabilities to an application, refer to
Chapter 21, “Routing Interface.”

Sound

The Newton includes a monophonic speaker and can play sounds sampled at rates
up to 22 kHz. You can attach sounds to particular events associated with aview,
such as showing it, hiding it, and scrolling it. You can aso use sound routines to
play sounds synchronously or asynchronously at any other time.

Newton can serve as a phone dialer by dialing phone numbers through the speaker.
The dialing tones are built into the system ROM, along with several other sounds
that can be used in applications.

System Services 1-9

1-10

CHAPTER 1

Overview

Besides the sounds that are built into the system ROM, you can import external
sound resources into an application through the Newton Toolkit devel opment
environment.

For information about using sound in an application, see Chapter 14, “Sound.”

Book Reader

Book Reader is a system service that displays interactive digital books on the
Newton screen. Digital books can include multiple-font text, bitmap and vector
graphics, and on-screen controls for content navigation. Newton digital books
allow the user to scroll pages, mark pages with bookmarks, access data directly by
page number or subject, mark up pages using digital ink, and perform text searches.
Of course, the user can copy and paste text from digital books, as well as print text
and graphics from them.

Newton Press and Newton Book Maker are two different development tools that
you use to create digital books for the Newton. Nonprogrammers can easily create
books using Newton Press. Newton Book Maker is a more sophisticated tool that
uses a text-based command language allowing you to provide additional servicesto
the user or exercise greater control over page layout. Also, using Book Maker, you
can attach data, methods, and view templates to book content to provide customized
behavior or work with the Intelligent Assistant.

The Book Maker application can also be used to create on-line help for an
application. The installation of on-line help in an application package requires
some rudimentary NewtonScript programming ability; however, nonprogrammers
can create on-line help content, again using only aword processor and some basic
Book Maker commands.

Refer to the book Newton Book Maker User’s Guide for information on Book
Reader, the Book Maker command language, and the use of Newton Toolkit to
create digital book packages and on-line help. Refer to the Newton Press User’s
Guide for information on using Newton Press.

Find

Find is a system service that allows usersto search one or all applicationsin the
system for occurrences of a particular string. Alternatively, the user can search for
data time-stamped before or after a specified date. When the search is compl eted,
the Find service displays an overview list of items found that match the search
criteria. The user can tap an item in the list and the system opens the corresponding
application and displays the data containing the selected string. Users access the
Find service by tapping the Find button.

System Services

CHAPTER 1

Overview

If you want to allow the user to search for data stored by your application, you
need to implement certain methods that respond to find messages sent by the
system. You'll need to supply one method that searches your application’s soup(s)
for data and returns the results in a particular format, and another method that
locates and displays the found data in your application if the user tapson it in the
find overview. The system software includes routines and templates that help you
support find in your application. For details on supporting the Find service, refer to
Chapter 16, “Find.”

Filing

The Filing service allows users to tag soup-based datain your application with
labels used to store, retrieve, and display the data by category. The labels used to
tag entries are represented as foldersin the user interface; however, no true
hierarchical filing exists—the tagged entries still reside in the soup. Users access
the filing service through a standard user interface element called the file folder
button, which looks like a small file folder.

When the user chooses a category for an item, the system notifies your application
that filing has changed. Your application must perform the appropriate application-
specific tasks and redraw the current view, providing to the user theillusion that the
item has been placed in afolder. When the user chooses to display datafrom a
category other than the currently displayed one, the system also natifies your
application, which must retrieve and display datain the selected category.

The system software includes templates that help your application implement the
filing button and the selector that allows the user to choose which category of data
to display. Your application must provide methods that respond to filing messages
sent by the system in response to user actions such asfiling an item, changing the
category of items to display, and changing the list of filing categories. For details
on supporting the Filing service, refer to Chapter 15, “Filing.”

Communications Services

This section provides an overview of the communications services in Newton
system software 2.0.

The Newton communications architecture is application-oriented, rather than
protocol-oriented. This means that you can focus your programming efforts on
what your application needs to do, rather than on communication protocol details.
A simple high-level NewtonScript interface encapsulates all protocol details, which
are handled in the same way regardless of which communication transport tool you
are using.

Communications Services 1-11

CHAPTER 1

Overview

The communication architecture is flexible, supporting complex communication
needs. The architecture is also extensible, allowing new communication transport
toolsto be added dynamically and accessed through the same interface as existing
transports. In this way, new communication hardware devices can be supported.

The Newton communications architecture isillustrated in Figure 1-2.

Figure 1-2 Communications architecture

1-12

Application

NewtonScript

Routing interface

|
L

In/out box

-

Transport interface
I

z

Transport @ Endpoint interface

£z

Endpoint object

Low-level communications system ‘

Communication tools

Serial Modem MNP IR FAX ATalk

11

Hardware devices

Modem Radio Keybd GSM CDPD

Figure 1-2 shows four unique communications interfaces available for you to use:

= routing interface
= endpoint interface

Communications Services

CHAPTER 1

Overview

= transport interface
= communication tool interface

The first two, routing and endpoint interfaces, are available for NewtonScript
applications to use directly.

The transport interface is a NewtonScript interface, but it isn’'t used directly by appli-
cations. A transport consists of a special kind of application of its own that isinstalled
on aNewton device and that provides new communication services to the system.

The communication tool interface is alow-level C++ interface.
These interfaces are described in more detail in the following sections.

NewtonScript Application Communications

There are two basic types of NewtonScript communications an application can do.
The most common type of communication that most applications do is routing
through the In/Out Box. As an alternative, applications can use the endpoint interface
to control endpoint objects.

Typically, an application uses only one of these types of communication, but
sometimes both are needed. These two types of communication are described in
the following sections.

Routing Through the In/Out Box

Therouting interface is the highest-level NewtonScript communication interface.
The routing interface allows an application to communicate with the In/Out Box
and lets users send data and receive data from outside the system. In applications,
users access routing services through a standard user interface el ement called the
Action button, which looks like a small envelope. Users access the In/Out Box
application through icons in the Newton Extras Drawer. The InfOut Box provides a
common user interface for all incoming and outgoing data in the system.

Therouting interface is best suited for user-controlled messaging and transaction-
based communications. For example, the Newton built-in applications use this
interface for e-mail, beaming, printing, and faxing. Outgoing items can be stored in
the Out Box until a physical connection is available, when the user can choose to
transmit the items, or they can be sent immediately. Incoming items are received in
the In Box, where the user can get new mail and beamed items, for example.

For information on the routing interface, refer to Chapter 21, “Routing Interface.”

The In/Out Box makes use of the transport and endpoint interfaces internally to
perform its operations.

If you are writing an application that takes advantage of only the transports
currently installed in the Newton system, you need to use only the routing

Communications Services 1-13

1-14

CHAPTER 1

Overview

interface. You need to use the transport or endpoint interfaces only when writing
custom communication tools.

Endpoint Interface

The endpoint interface is a somewhat lower-level NewtonScript interface; it has no
visible representation to the Newton user. The endpoint interfaceis suited for
real-time communication needs such as database access and terminal emulation. It
uses an asynchronous, state-driven communications model.

The endpoint interface is based on a single proto—pr ot oBasi cEndpoi nt —that
provides a standard interface to all communication tools (serial, fax modem,
infrared, AppleTak, and so on). The endpoint object created from this proto
encapsulates and maintains the details of the specific connection. This proto
provides methods for

= interacting with the underlying communication tool

= Setting communication tool options

= Opening and closing connections

= sending and receiving data

The basic endpoint interface is described in Chapter 23, “Endpoint Interface”

Low-Level Communications

There are two lower-level communication interfaces that are not used directly by
applications. The transport and communication tool interfaces are typically used
together (along with the endpoint interface) to provide a new communication
service to the system.

These two interfaces are described in the following sections.

Transport Interface

If you are providing a new communication service through the use of endpoints
and lower-level communication tools, you may need to use the transport interface.
The transport interface allows your communication service to talk to the In/Out
Box and to make itself available to users through the Action button (envel ope icon)
in most applications.

When the user taps the Action button in an application, the Action picker appears.
Built-in transports available on the Action picker include printing, faxing, and
beaming. Any new transports that you provide are added to this|ist.

For more information, refer to Chapter 22, “ Transport I nterface.”

Communications Services

CHAPTER 1

Overview

Communication Tool Interface

Underlying the NewtonScript interface is the low-level communications system.
This system consists of a communications manager module and severa code
components known as communication tools. These communication tools interact
directly with the communication hardware devicesinstalled in the system. The
communication tools are written in C++ and are not directly accessible from
NewtonScript—they are accessed indirectly through an endpoint object.

The built-in communication tools include:
= Synchronous and asynchronous serial

» Fax/datamodem (dataisV.34 with MNP/V.42 and fax is V.17 with Class 1, 2,
and 2.0 support)

= Point-to-point infrared—called beaming (Sharp 9600 and Apple | R-enhanced
protocols)

= AppleTalk ADSP protocol

For information about configuring the built-in communication tools through the
endpoint interface, refer to Chapter 24, “Built-in Communications Tools.”

Note that the communications manager module, and each of the individual
communication tools, runs as a separate operating system task. All NewtonScript
codeisin adifferent task, called the Application task.

The system is extensible—additional communication tools can be installed at run
time. Installed tools are made available to NewtonScript client applications through
the same endpoint interface as the built-in tools.

At some point, Apple Computer, Inc. may release the tools and interfaces that
alow C++ communication tool development.

Application Components

At the highest level of system software are dozens of components that applications
can use to construct their user interfaces and other nonvisible objects. These
reusable components neatly package commonly needed user interface objects such
as buttons, lists, tables, input fields, and so on. These components incorporate
NewtonScript code that makes use of other system services, and which an
application can override to customize an object.

These components are built into the Newton ROM. When you reference one of
these components in your application, the code isn't copied into your application—
your application simply makes a reference to the component in the ROM. This
conserves memory at run time and still allows your application to easily override
any attributes of the built-in component. Because you can build much of your

Application Components 1-15

CHAPTER 1

Overview

application using these components, Newton applications tend to be much smaller
in size than similar applications on desktop computers.

A simple example of how you can construct much of an application using
componentsisillustrated in Figure 1-3. This simple application accepts names and
phone numbers and saves them into a soup. It was constructed in just a few minutes
using three different components.

The application base view isimplemented by a single component that includes the
title bar at the top, the status bar at the bottom, the clock and the close box, and the
outer frame of the application. The Name and Phone input lines are each created
from the same component that implements a simple text input line; the two buttons
are created from the same button component. The only code you must write to
make this application fully functional is to make the buttons perform their actions.
That is, make the Clear button clear the input lines and make the Save button get
the text from the input lines and save it to a soup.

Figure 1-3 Using components

1-16

My Application

Marne:

Phone:

[Clear] [Save]

@ £3)

The components available for use by applications are shown on the layout pal ette
in Newton Toolkit. These components are known as protos, which is short for
“prototypes.” In addition to the built-in components, Newton Toolkit |ets you create
your own reusable components, called user protos. The various built-in components
are documented throughout the book in the chapter containing information related
to each proto. For example, text input protos are described in Chapter 8, “Text and
Ink Input and Display;” protos that implement pickers and lists are described in
Chapter 6, “Pickers, Pop-up Views, and Overviews;” and protos that implement
controls and other miscellaneous protos are described in Chapter 7, “ Controls and
Other Protos.”

Application Components

CHAPTER 1

Overview
The NewtApp framework consists of a special collection of protos that are designed

to be used together in alayered hierarchy to build a complete application. For more
information about the NewtApp protos, refer to Chapter 4, “NewtApp Applications.”

Using System Software

Most of the routines and application components that comprise the Newton system
software reside in ROM, provided in special chips contained in every Newton
device. When your application calls a system routine, the operating system executes
the appropriate code contained in ROM.

Thisis different from traditional programming environments where system
software routines are accessed by linking a subroutine library with the application
code. That approach resultsin much larger applications and makes it harder to
provide new features and fix bugs in the system software.

The ROM-based model used in the Newton provides a simple way for the
operating system to substitute the code that is executed in response to a particular
system software routine, or to substitute an application component. Instead of
executing the ROM-based code for some routine, the operating system might
choose to load some substitute code into RAM; when your application calls the
routine, the operating system intercepts the call and executes the RAM-based code.

RAM-based code that substitutes for ROM-based code is called a system update.
Newton system updates are stored in the storage memory domain, whichis
persistent storage.

Besides application components, the Newton ROM contains many other objects
such as fonts, sounds, pictures, and strings that might be useful to applications.
Applications can access these objects by using special references called magic
pointers. Magic pointers provide a mechanism for code written in a development
system separate from the Newton to reference objects in the Newton ROM or in
other packages. Magic pointer references are resolved at run time by the operating
system, which substitutes the actual address of the ROM or package object for the
magic pointer reference.

Magic pointers are constants defined in Newton Toolkit. For example, the names of
al the application components, or protos, are actually magic pointer constants. You
can find alist of all the ROM magic pointer constants in the Newton 2.0 Defsfile,
included with Newton Toolkit.

Using System Software 1-17

CHAPTER 1

Overview

The NewtonScript Language

You write Newton applications in NewtonScript, a dynamic object-oriented
language devel oped especially for the Newton platform, though the language is
highly portable. NewtonScript is designed to operate within tight memory
constraints, so iswell suited to small hand-held devices like Newton.

NewtonScript is used to define, access, and manipulate objects in the Newton
system. NewtonScript frame objects provide the basis for object-oriented features
such as inheritance and message sending.

Newton Toolkit normally compiles NewtonScript into byte codes. The Newton
system software contains a byte code interpreter that interprets the byte codes at
run time. This has two advantages. byte codes are much smaller than native code,
and Newton applications are easily portable to other processors, since the
interpreter is portable. Newton Toolkit can also compile NewtonScript into native
code. Native code occupies much more space than interpreted code, but in certain
circumstances it can execute much faster.

For a compl ete reference to NewtonScript, refer to The NewtonScript Programming
Language.

What's New in Newton 2.0

1-18

Version 2.0 of the Newton System Software brings many changesto all areas.
Some programming interfaces have been extended; others have been completely
replaced with new interfaces; and still other interfaces are brand new. For those
readers familiar with previous versions of system software, this section givesa
brief overview of what is new and what has changed in Newton 2.0, focusing on
those programming interfaces that you will be most interested in as a devel oper.

NewtApp

NewtApp is anew application framework designed to help you build a complete,
full-featured Newton application more quickly. The NewtApp framework consists
of acollection of protos that are designed to be used together in alayered hierarchy.
The NewtApp framework links together soup-based data with the display and
editing of that datain an application. For many types of applications, using the
NewtApp framework can significantly reduce devel opment time because the protos
automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

The NewtonScript Language

CHAPTER 1

Overview

The NewtApp framework is not suited for all Newton applications. If your
application stores data as individual entriesin a soup, displays that data to the user
in views, and allows the user to edit some or al of the data, then it is a potential
candidate for using the NewtApp framework. NewtApp is well suited to “classic”
form-based applications. Some of the built-in applications constructed using the
NewtApp framework include the Notepad and the Namesfile.

Stationery

Stationery is anew capability of Newton 2.0 that allows applications to be extended
by other developers. If your application supports stationery, then it can be extended by
others. Similarly, you can extend another devel oper’s application that supports
stationery. You should also note that the printing architecture now uses stationery,
so al application print formats are registered as akind of stationery.

Stationery is a powerful capability that makes applications much more extensible
than in the past. Stationery is also well integrated into the NewtApp framework, so
if you use that framework for your application, using stationery is easy. For more
information about stationery, see the section “ Stationery” (page 1-8).

Views

New features for the view system include a drag-and-drop interface that allows you
to provide users with a drag-and-drop capability between views. There are hooksto
provide for custom feedback to the user during the drag process and to handle
copying or moving the item.

The system now includes the capability for the user to view the display in portrait
or landscape orientation, so the screen orientation can be changed (rotated) at any
time. Applications can support this new capability by supporting the new

Reor i ent ToScr een message, which the system usesto aert all applicationsto
re-layout their views.

Several new view methods provide features such as bringing a view to the front or
sending it to the back, automatically sizing buttons, finding the view bounds
including the view frame, and displaying modal dialogs to the user.

Thereisanew message, Vi ewPost Qui t Scri pt, that is sent to aview (only on
request) when it is closing, after all of the view’s child views have been destroyed.
This allows you to do additional clean-up, if necessary. And, you’ll be pleased to
know that the order in which child views receive the Vi ewQui t Scri pt message
isnow well defined: it is top-down.

Additionally, there are some new vi ewdust i f y constants that allow you to
specify that aview is sized proportionally to its sibling or parent view, horizontally
and/or verticaly.

What's New in Newton 2.0 1-19

1-20

CHAPTER 1

Overview

Protos

There are many new protos supplied in the new system ROM. There are new
pop-up button pickers, map-type pickers, and severa new time, date, and duration
pickers. There are new protos that support the display of overviews and lists based
on soup entries. There are new protos that support the input of rich strings (strings
that contain either recognized characters or ink text). There are a variety of new
scroller protos. Thereis an integrated set of protos designed to make it easy for you
to display status messages to the user during lengthy or complex operations.

Generic list pickers, available in system 1.0, have been extended to support bitmap
items that can be hit-tested as two-dimensional grids. For example, a phone keypad
can beincluded as asingle item in a picker. Additionally, list pickers can now
scroll if al theitems can't fit on the screen.

Data Storage

There are many enhancements to the data storage system for system software 2.0.
Genera soup performance is significantly improved. A tagging mechanism for
soup entries makes changing folders much faster for the user. You can use the
tagging mechanism to greatly speed access to subsets of entriesin a soup. Queries
support more features, including the use of multiple slot indexes, and the query
interface is cleaner. Entry aliases make it easy to save unique references to soup
entries for fast access later without holding onto the actual entry.

A new construct, the virtual binary object, supports the creation and manipulation
of very large objects that could not be accommodated in the NewtonScript heap.
There is anew, improved soup change-notification mechanism that gives applications
more control over notification and how they respond to soup changes. More precise
information about exactly what changed is communicated to applications. Soup
data can now be built directly into packages in the form of a store part. Additionally,
packages can contain protos and other objects that can be exported through magic
pointer references, and applications can import such objects from available packages.

Text Input

The main change to text input involves the use of ink text. The user can choose to
leave written text unrecognized and still manipulate the text by inserting, deleting,
reformatting, and moving the words around, just as with recognized text. Ink words
and recognized words can be intermixed within a single paragraph. A new string
format, called arich string, handles both ink and recognized text in the same string.

There are new protos, pr ot oRi chl nput Li ne and
prot oRi chLabel I nput Li ne, that you can use in your application to alow
usersto enter ink text in fields. In addition, the view classescl Edi t Vi ewand

What's New in Newton 2.0

CHAPTER 1

Overview

cl Par agr aphVi ewnow support ink text. There are several new functions that
allow you to manipulate and convert between regular strings and rich strings. Other
functions provide access to ink and stroke data, allow conversion between strokes,
points, and ink, and allow certain kinds of ink and stroke manipulations.

There are several new functions that allow you to access and manipulate the
attributes of font specifications, making changing the font attributes of text much
easier. A new font called the handwriting font is built in. This font looks similar to
handwritten characters and is used throughout the system for all entered text. You
should useit for displaying al text the user enters.

The use of on-screen keyboards for text input is also improved. There are new
proto buttons that your application can use to give users access to the available
keyboards. It's easier to include custom keyboards for your application. Several
new methods allow you to track and manage the insertion caret, which the system
displays when a keyboard is open. Note also that area hardware keyboard is
available for the Newton system, and users may use it anywhere to enter text. The
system automatically supportsitsusein al text fields.

Graphics and Drawing

Style frames for drawing shapes can now include a custom clipping region other
than the whole destination view, and can specify ascaling or offset transformation
to apply to the shape being drawn.

Several new functions allow you to create, flip, rotate, and draw into bitmap
shapes. Also, you can capture al or part of aview into abitmap. There are new
protos that support the display, manipulation, and annotation of large bitmaps such
asreceived faxes. A new function, | nvert Rect , inverts arectanglein aview.

Views of theclasscl Pi ct ur eVi ewcan now contain graphic shapesin addition to
bitmap or picture objects.

System Services

System-supplied Filing services have been extended; applications can now filter the
display of items according to the store on which they reside, route items directly to
a specified store from the filing dlip, and provide their own unique folders. In
addition, registration for notification of changes to folder names has been simplified.

Two new global functions can be used to register or unregister an application with
the Find service. In addition, Find now maintains its state between uses, performs
“date equal” finds, and returns to the user more quickly.

Applications can now register callback functions to be executed when the Newton
powers on or off. Applications can register aview to be added to the user preferences
roll. Similarly, applications can register aview to be added to the formulasroll.

What's New in Newton 2.0 1-21

CHAPTER 1

Overview

The implementation of undo has changed to an undo/redo model instead of two
levels of undo, so applications must support this new model.

Recognition

Recognition enhancements include the addition of an alternate high-quality
recognizer for printed text and significant improvements in the cursive recognizer.
While this doesn’t directly affect applications, it does significantly improve
recognition performance in the system, leading to a better user experience. Other
enhancements that make the recognition system much easier to use include a new
correction picker, anew punctuation picker, and the caret insertion writing mode
(new writing anywhereisinserted at the caret position).

Specific enhancements of interest to devel opers include the addition of a

r ecConf i g frame, which alows more flexible and precise control over
recognition in individual input views. A new proto, pr ot oChar Edi t , provides a
comb-style entry view in which you can precisely control recognition and restrict
entries to match a predefined character template.

Additionally, there are new functions that allow you to passink text, strokes, and
shapes to the recognizer to implement your own deferred recognition. Detailed
recognition corrector information (alternate words and scores) is now available
to applications.

Sound

The interface for playing sounds is enhanced in Newton 2.0. In addition to the
existing sound functions, there is a new function to play a sound at a particular
volume and thereis anew pr ot oSoundChannel object. The

pr ot oSoundChannel object encapsulates sounds and methods that operate on
them. Using a sound channel object, sound playback is much more flexible—the
interface supports starting, stopping, pausing, and playing sounds simultaneously
through multiple sound channels.

Built-in Applications

Unlikein previous versions, the built-in applications are all more extensiblein
version 2.0. The Notepad supports stationery, so you can easily extend it by adding
new “paper” typesto the New pop-up menu. The Names file also supports stationery,
S0 it’s easy to add new card types, new card layout styles, and new data items to
existing cards by registering new data definitions and view definitions for the
Names application. There's also a method that adds a new card to the Names soup.

1-22 What's New in Newton 2.0

CHAPTER 1

Overview

The Dates application includes a comprehensive interface that gives you the ability
to add, find, move, and del ete meetings and events. You can get and set various
kinds of information related to meetings, and you can create new meeting types for
the Dates application. You can programmatically control what day is displayed as
thefirst day of the week, and you can control the display of aweek number in the
Calendar view.

The To Do List application aso includes a new interface that supports creating new
to do items, retrieving items for a particular date or range, removing old items, and
other operations.

Routing and Transports

The Routing interface is significantly changed in Newton 2.0. The system builds
the list of routing actions dynamically, when the user taps the Action button. This
alows al applications to take advantage of new transports that are added to the
system at any time. Many hooks are provided for your application to perform
custom operations at every point during the routing operation. You register routing
formats with the system as view definitions. A new function allows you to send
items programmatically.

Your application has much more flexibility with incoming items. You can choose to
automatically put away items and to receive foreign data (items from different
applications or from a non-Newton source).

The Transport interface is entirely new. Thisinterface provides several new protos
and functions that allow you to build a custom communication service and make it
available to all applications through the Action button and the In/Out Box. Features
include alogging capability, a system for displaying progress and status information
to the user, support for custom routing slips, and support for transport preferences.

Endpoint Communication

The Endpoint communication interface is new but very similar to the 1.0 interface.
Thereisanew proto, pr ot oBasi cEndpoi nt , that encapsulates the connection
and provides methods to manage the connection and send and receive data.
Additionaly, a derivative endpoint, pr ot 0St r eani ngEndpoi nt , provides the
capability to send and receive very large frame objects.

Specific enhancements introduced by the new endpoint protos include the ability to
handle and identify many more types of data by tagging the data using data forms
specified in the f or mslot of an endpoint option. Most endpoint methods can now
be called asynchronously, and asynchronous operation is the recommended way to
do endpoint-based communication. Support is aso included for time-outs and
multiple termination sequences. Error handling isimproved.

What's New in Newton 2.0 1-23

1-24

CHAPTER 1

Overview

There have been significant changes in the handling of binary (raw) data. For input,
you can now target adirect data input object, resulting in significantly faster
performance. For output, you can specify offsets and lengths, allowing you to send
the datain chunks.

Additionally, there is now support for multiple simultaneous communication
Sessions.

Utilities

Many new utility functions are available in Newton 2.0. There are several new
deferred, delayed, and conditional message-sending functions. New array functions
provide ways to insert elements, search for elements, and sort arrays. Additionaly,
there’s anew set of functions that operate on sorted arrays using binary search
algorithms. New and enhanced string functions support rich strings, perform
conditional substring substitution, tokenize strings, and perform case-sensitive
string compares. A new group of functions gets, sets, and checks for the existence
of global variables and functions.

Books

New Book Reader features include better browser behavior (configurable
auto-closing), expanded off-line bookkeeping abilities, persistent bookmarks, the
ability to remove bookmarks, and more efficient use of memory.

New interfaces provide additional ways to navigate in books, customize Find
behavior, customize bookmarks, and add help books. Book Reader aso supports
interaction with new system messages related to scrolling, turning pages, installing
books, and removing books. Additional interfaces are provided for adding items to
the status bar and the Action menu.

What's New in Newton 2.0

CHAPTER 2

Getting Started

This chapter describes where to begin when you're thinking about developing a
Newton application. It describes the different kinds of software you can develop
and install on the Newton and the advantages and disadvantages of using different
application structures.

Additionally, this chapter describes how to create and register your devel oper
signature.

Before you read this chapter, you should be familiar with the information described
in Chapter 1, “Overview.”

Choosing an Application Structure

When you create an application program for the Newton platform, you can use one
of the following basic types of application structures:

= minimal predefined structure, by basing the application on aview class of
cl Vi ewor the pr ot 0App proto

= highly structured, by basing the application on the NewtApp framework of protos
= highly structured and specialized for text, by building a digital book

Alternatively, you might want to devel op software that is not accessed through an
icon in the Extras Drawer. For example, you might want to install stationery, a
transport, or some other kind of specialized software that does something like
creating a soup and then removing itself.

These various approaches to software development are discussed in the following
sections.

Minimal Structure

The minimalist approach for designing a Newton application starts with an empty
or nearly empty container that provides little or no built-in functionality—thus the
“minimalist” name. This approach is best suited for specialized applications that

Choosing an Application Structure 2-1

CHAPTER 2

Getting Started

don't follow the “classic” form-based model. For example, some types of
applications that might use this approach include games, utilities, calculators, and
graphics applications.

The advantage of using the minimalist approach isthat it's simple and small.
Usually you'd choose this approach because you don’'t need or want alot of
built-in support from a comprehensive application framework, along with the extra
size and overhead that such support brings.

The disadvantage of the minimalist approach isthat it doesn’t provide any support
from built-in features, like the NewtApp framework does. You get just asimple
container in which to construct your application.

To construct an application using the minimalist approach, you can use the view
classcl Vi ewor the proto pr ot oApp as your application base view. The view
classcl Vi ewisthe bare minimum you can start with. Thisisthe most basic of the
primitive view classes. It provides nothing except an empty container. The

pr ot oApp provides alittle bit more, it includes a framed border, atitle at the top,
and a close box so the user can close it. For details on these objects, seecl Vi ew
(page 1-1) and pr ot oApp (page 1-2) in Newton Programmer’s Reference.

Neither of these basic containers provide much built-in functionality. You must add
functionality yourself by adding other application components to your application.
There are dozens of built-in protos that you can use, or you can create your own
protos using NTK. Most of the built-in protos are documented in these two chapters:
Chapter 6, “Pickers, Pop-up Views, and Overviews,”and Chapter 7, “Controls and
Other Protos.” Note also that certain protos in the NewtApp framework can be

used outside of a NewtApp application. For information on NewtApp protos, see
Chapter 4, “NewtApp Applications.”

NewtApp Framework

NewtApp is an application framework that is well suited to “classic” form-based
applications. Such applications typically gather and store data in soups, display
individual soup entriesto usersin views, and allow the user to edit some or al of
the data. For example, some types of applications that might use NewtApp include
surveys and other data gathering applications, personal information managers, and
record-keeping applications. Some of the built-in applications constructed using
NewtApp include the Notepad, Namesfile, In/Out Box, Calls, and Time Zones.

The advantage of NewtApp isthat it provides a framework of protos designed to
help you build a complete, full-featured Newton application more quickly than if
you started from scratch. The NewtApp protos are designed to be used together in a
layered hierarchy that links together soup-based data with the display and editing

of that datain an application. For many types of applications, using the NewtApp
framework can significantly reduce devel opment time because the protos

Choosing an Application Structure

CHAPTER 2

Getting Started

automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

The disadvantage of NewtApp isthat it is structured to support a particular kind of
application—one that allows the creation, editing, and display of soup data. And
particularly, it supports applications structured so that there is one data element
(card, note, and so on) per soup entry. If your application doesn’t lend itself to that
structure or doesn’t need much of the support that NewtApp provides, then it
would be better to use a different approach to application design.

For details on using the NewtApp framework to construct an application, see
Chapter 4, “NewtApp Applications.”

Digital Books

If you want to devel op an application that displays alarge amount of text, handles
multiple pages, or needs to precisely layout text, you may want to consider making
adigital book instead of atraditional application. In fact, if you are dealing with a
really large amount of text, like more than afew dozen screens full, then you could
make your job much easier by using the digital book development tools.

Digital books are designed to display and manipulate large amounts of text and
graphics. Digital books can include all the functionality of an application—they
can include views, protos, and methods that are executed as a result of user actions.
In fact, you can do almost everything in adigital book that you can do in amore
traditional application, except atraditional application doesn’'t include the text
layout abilities.

The advantage of using a digital book structure is that you gain the automatic text
layout and display abilities of Book Reader, the built-in digital book reading appli-
cation. Additionally, the book-making tools are easy to use and alow you to quickly
turn large amounts of text and graphics into Newton books with minimal effort.

The disadvantage of using adigital book isthat it is designed to support a
particular kind of application—one that is like a book. If your application doesn’t
lend itself to that structure or doesn’t need much of the text-handling support that
Book Reader provides, then it would be better to use a different approach to
application design.

For information on creating digital books using the Book Maker command
language and/or incorporating NewtonScript code and objects into digital books,
see Newton Book Maker User’s Guide. For information on creating simpler digital
books see Newton Press User’s Guide.

Choosing an Application Structure 2-3

CHAPTER 2

Getting Started

Other Kinds of Software

There are other kinds of software you can develop for the Newton platform that are
not accessed by the user through an icon in the Extras drawer. These might include
new types of stationery that extend existing applications, new panels for the
Preferences or Formulas applications, new routing or print formats, communication
transports, and other kinds of invisible applications. Such softwareisinstaled in a
kind of part called an auto part (because its part codeis aut o).

You can aso install aspecia kind of auto part that is automatically removed after it
isinstalled. Thel nst al | Scri pt function in the auto part is executed, and then it
is removed. (For more information about thel nst al | Scri pt function, see the
section “ Package Loading, Activation, and Deactivation” beginning on page 2-4.)
Thiskind of auto part is useful to execute some code on the Newton, for example,
to create a soup, and then to remove the code. This could be used to write an installer
application that installs just a portion of the data supplied with an application. For
example, you might have a game or some other application that uses various data
sets, and the installer could let the user choose which data setsto install (as soups)
to save storage space.

Any changes made by an automatically removed auto part are lost when the
Newton is reset, except for changes made to soups, which are persistent.

For additional information about creating auto parts and other kinds of parts such
as font, dictionary, and store parts, refer to Newton Toolkit User’s Guide.

Package L oading, Activation, and Deactivation

When a package is first loaded onto the Newton store from some external source,
the system executes the DoNot | nst al | Scri pt function in each frame part in
the package. This function gives the parts in the package a chance to prevent
installation of the package. If the package is not prevented from being installed,
next it is activated.

When a package containing an application or auto part is activated on the Newton,
the system executes a specia function in those parts: thel nst al | Scri pt
function. A package is normally activated as aresult of installing it—by inserting a
storage card containing it, by moving it from one store to another, by downloading
it from a desktop computer, by downloading it via modem or some other communi-
cation device, or by soft resetting the Newton device. Packages can also exist in an
inactive state on a Newton store, and such a package can be activated by the user at
alater time.

When a package is deactivated, the system executes another special functionin
each of the application and auto parts in the package: the RenoveScr i pt
function. A package is normally deactivated when the card it resides on is removed,

Package Loading, Activation, and Deactivation

fun
beg

end

c()

in

CHAPTER 2

Getting Started

when it is moved to another store (it is deactivated then reactivated), or when the
user deletes the application icon in the Extras Drawer. Packages can also be
deactivated without removing them from the store.

When a package is removed as aresult of the user deleting it from the Extras
Drawer, the system also executesthe Del et i onScri pt function in each of the
package frame parts. This occurs before the RenmoveScr i pt function is executed.

The following sections describe how to use these functions.

Loading

TheDoNot | nst al | Scri pt function in a package part is executed when a
package isfirst loaded onto a Newton store from some external source (this does
not include inserting a storage card containing the package or moving it between
stores). This function appliesto al types of frame parts (for example, not store parts).

This method gives the parts in the package a chance to prevent installation of the
entire package. If any of the package parts returnsanon-ni | value from this
function, the package is not installed and is discarded.

You should provide the user with some kind of feedback if package installation is
prevented, rather than silently failing. For example, to ensure that a packageis
installed only on the internal store you could writeaDoNot | nst al | Scri pt
function like the following:

if GetStores()[0] <> GetVBOStore(ObjectPkgRef ('foo)) then

begi n

CGet Root () : Notify(kNotifyAl ert, kAppNane,

true;

end;

"Thi s package was not installed.
It can be installed only onto the internal store.");

Activation

Thel nstal | Scri pt function in apackage part is executed when an application
or auto part is activated on the Newton or whenever the Newton is reset.

This function lets you perform any special installation operations that you need to
do, any initialization, and any registration for system services.

Package Loading, Activation, and Deactivation 2-5

2-6

CHAPTER 2

Getting Started

IMPORTANT
Any changes that you make to the system in the

I nstall Scri pt function must be reversed in the
RenpveScri pt function. For example, if you register your
application for certain system services or install print formats,
stationery, or other objectsin the system, you must reverse
these changes and remove or unregister these objectsin the
RemoveScri pt function. If you fail to do this, such changes
cannot be removed by the user, and if your applicationison a
card, they won't be able to remove the card without getting a
warning message to put the card back. a

Only applications and auto partsusethe | nst al | Scri pt function. Note that the
I nstal | Scri pt function takes one extra argument when used for an auto part.
Applications built using the NewtApp framework require special

Install Script and RenoveScri pt functions. For details, see Chapter 4,
“NewtApp Applications.”

Deactivation

The RenpveScri pt function in a package part is executed when an application or
auto part is deactivated.

This function lets you perform any special deinstallation operations that you need
to do, any clean-up, and any unregistration for system services that you registered
forinthel nstal | Scri pt function.

Note that automatically removed auto parts do not use the RenoveScr i pt
function since such auto parts are removed immediately after the
I nstall Scri pt isexecuted—the RenmoveScri pt isnot executed.

In addition to the RenbveScri pt function, ancther function, Del eti onScri pt,
is executed when the user removes a package by deleting it from the Extras
Drawer. This function appliesto all types of frame parts, and is actually executed
beforethe RenobveScri pt function.

TheDel eti onScri pt functionisoptional. It lets you do different clean-up
based on the assumption that the user is permanently deleting a package, rather
than simply gjecting the card on which it happensto reside. For example, in the
Del eti onScri pt function, you might want to delete all the soups created by the
application—checking with the user, of course, before performing such an
irreversible operation.

Package Loading, Activation, and Deactivation

CHAPTER 2

Getting Started

Effects of System Resets on Application Data

Two kinds of reset operations—hard resets and soft resets—can occur on Newton
devices. All datain working RAM (the NewtonScript heap and the operating
system domain) is erased when a hard or soft reset occurs.

Unless a hard reset occurs, soups remain in RAM until they are removed explicitly,
even if the Newton deviceis powered down. Soups are not affected by soft resets,
asthey are stored in the protected storage domain. The remainder of this section
describes reset operations in more detail and suggests ways to ensure that your
application can deal with resets appropriately.

A hard reset occurs at least once in the life of any Newton device—when it is
initially powered on. The hard reset returns al internal RAM to a known state: all
soups are erased, all caches are purged, all application packages are erased from
theinternal store, application RAM isreinitialized, the NewtonScript heap is
reinitialized, and the operating system restartsitself. It's the end (or beginning) of
the world as your application knows it.

Note
Data on external storesis not affected by ahard reset. O

A hard reset isinitiated only in hardware by the user. Extreme precautions have
been taken to ensure that this action is deliberate. On the MessagePad, the user
must simultaneously manipulate the power and reset switches to initiate the
hardware reset. After thisis accomplished, the hardware reset displays two dialog
boxes warning the user that all datais about to be erased; the user must confirm
this action in both dialog boxes before the hard reset takes place.

It is extremely unlikely that misbehaving application software would cause a hard
reset. However, a state similar to hardware reset may be achieved if the battery that
backs up internal RAM is removed or fails completely.

It's advisable to test your application’s ability to install itself and run on a system
that has been initialized with a hard reset. The exact sequence of steps required to
hard reset a Newton device is documented in its user guide.

Newton devices may also perform a soft reset operation. A soft reset erases al data
stored by applications in the NewtonScript heap, for example all data stored in
slotsin views or other framesin memory. A soft reset also reinitializes the data
storage system frames cache, while leaving soup data intact. Any framesin the
cache are lost, such as new or modified entries that have not been written back to
the soup. A soft reset can be initiated in software by the operating system or from
hardware by the user.

Effects of System Resets on Application Data 2-7

CHAPTER 2

Getting Started

When the operating system cannot obtain enough memory to compl ete a requested

operation, it may display adialog box advising the user to reset the Newton device.
The user can tap the Reset button displayed in the dialog box to reset the system, or
can tap the Cancel button and continue working.

The user may also initiate a soft reset by pressing a hardware button provided for
this purpose. This button is designed to prevent its accidental use. On the
MessagePad, for example, it is recessed inside the battery compartment and must
be pressed with the Newton pen or similarly-shaped instrument.

A soft reset may also be caused by misbehaving application software. One way to
minimize the occurrence of unexpected resetsis to utilize exception-handling code
where appropriate.

The only way applications can minimize the consegquences of a soft reset isto be
prepared for one to happen at any time. Applications need to store all permanent
datain a soup and write changed entries back to the soup as soon asisfeasible.

It's advisable to test your application’s ability to recover from a soft reset. The
exact sequence of steps required to soft-reset a particular Newton deviceis
documented in its user guide.

Flow of Control

The Newton system is an event-driven, object-oriented system. Code is executed in
response to messages sent to objects (for example, views). Messages are sent asa
result of user events, such as atap on the screen, or internal system events, such as
an idle loop triggering. The flow of control in atypical application begins when the
user taps on the application icon in the Extras Drawer. As aresult of this event, the
system performs several actions such as reading the values of certain slotsin your
application base view and sending a particular sequence of messagesto it.

For a detailed discussion of the flow of control and the order of execution when an
application “starts up,” see the section “View Instantiation” beginning on page 3-26.

Using Memory

The tightly-constrained Newton environment requires that applications avoid
wasting memory space on unused references. As soon as possible, applications
should setto ni | any object reference that is no longer needed, thereby allowing
the system to reclaim the memory used by that object. For example, when an
application closes, it needs to clean up after itself as much as possible, removing its
references to soups, entries, cursors, and any other objects. This means you should
settoni | any application base view dots that refer to objectsin RAM.

Flow of Control

CHAPTER 2

Getting Started

IMPORTANT
If you don't remove references to unused soups, entries, cursors,
and other objects, the objects will not be garbage collected,
reducing the amount of RAM available to the system and

other applications. a

Locdization

If your application displays strings, and you want your application to run on
localized Newton products, you should consider localizing your application. This
involves trangl ating strings to other languages and using other formats for dates,
times, and monetary values.

There are some features of NTK that make string localization simple, allowing you
to define the language at compile time to build versionsin different languages
without changing the source files. Refer to Newton Toolkit User’s Guide for more
information.

For details on localizing an application, see Chapter 20, “Localizing Newton
Applications”

Developer Signature Guidelines

To avoid name conflicts with other Newton application, you need to register a
single devel oper signature with Newton DTS. You can then use this signature as
the basis for creating unique application symbols, soup names and other global
symbols and strings according to the guidelines described in this section.

Signature

A signatureisan arbitrary sequence of approximately 4 to 10 characters. Any
characters except colons () and vertical bars([) can be used in asignature. Case is
not significant.

Like a handwritten signature, the devel oper signature uniquely identifies a Newton
application developer. The most important characteristic of asignatureisthat itis
unigue to a single devel oper, which iswhy Newton DTS maintains aregistry of
developer signatures. Once you have registered a signature with Newton DTSt is
yours, and will not be assigned to any other devel oper.

Localization 2-9

2-10

CHAPTER 2

Getting Started

Examples of valid signatures include

NEWTONDTS

Joe’ s Cool Apps
INEWTON2DTS

What the #$*? SW

How to Register

To register your signature, you need to provide the following information to the
Newton Development Information Group at Apple.

Conpany Nane:

Cont act Person:

Mai | i ng Address:

Phone:

Ermai | Address:

Desired Signature 1st choice:
Desired Signature 2nd choi ce:

Send this information to the e-mail address

NEWIONDEV@ppl el i nk. appl e. com
or send it viaUS Mail to:

NewtonSysOp

c/o: Apple Computer, Inc.

1 Infinite Loop, M/S. 305-2A
Cupertino, CA 95014

USA

Application Name

The application name is the string displayed under your application'sicon in the
Extras drawer. Because it isastring, any characters are allowed.

This name does not need to be unique, because the system does not use it to
identify the application. For example, it is possible for there to be two applications
named Chess on the market. The application nameis used only to identify the
application to the user. If there were in fact two applications named Chess
installed on the same Newton device, hopefully the user could distinguish one from
the other by some other means, perhaps by the display of different iconsin the
Extras drawer.

Developer Signature Guidelines

CHAPTER 2

Getting Started

Examples of valid application names include

Ll ama
Good Form
2 Fun 4 U
Chess

Note

It's recommended that you keep your application
names short so that they don’t crowd the names
of other applications in the Extras drawer. O

Application Symbol

The application symbol is created by concatenating the application name, a
colon (:), and your registered devel oper signature. This symbol is not normally
visible to the end user. It is used to uniquely identify an application in the system.
Because application symbols contain a colon (:), they must be enclosed by vertical
bars (]) where they appear explicitly in NewtonScript code.

Examples of valid application symbols include:

"| LI ana: NEWTONDTS|
|2 Fun 4 U: Joe’s Cool Apps|

You specify the application symboal in the Output Settings dialog of NTK. At the
beginning of a project build, NTK 1.5 or newer defines a constant for your project
with the name k AppSynbol and setsit to the symbol you specify asthe
application symbol. Use of this constant throughout your code makes it easier to
maintain your code.

At the end of the project build, if you've not created a dlot with the name
appSynbol in the application base view of your project, NTK creates such aslot
and placesin it the application symbol. If the slot exists already, NTK doesn’t
overwriteiit.

Package Name

The package nameis usually a string version of the application symbol. The
package name may be visible to the user if no application name is provided.
Package names are limited to 26 characters, so this places a practical limit on the
combined length of application names and signatures.

Developer Signature Guidelines 2-11

CHAPTER 2

Getting Started

Summary

View Classes and Protos

clView

aView : = {

viewd ass: clView, // base view class

vi ewBounds: boundsFrame, // | ocation and size
viewdustify: integer, // viewdustify flags

vi ewFl ags: integer, // viewFl ags flags

vi ewFor mat : integer, // viewFormat fl ags

protoApp

anApp = {

_proto: protoApp, // proto application
title: string, // application nane

vi ewBounds: boundsFrame, // |ocation and size
viewdJustify: integer, // viewdustify fl ags

vi ewFl ags: integer, // viewrl ags fl ags

vi ewFor mat : integer, // viewFormat flags

decl areSel f: 'base, // do not change

Functions

Application-Defined Functions

Install Script(partFrame) // for application parts

I nstal |l Scri pt (partFrame, removeFrame) // for auto parts
Del etionScri pt ()

DoNot I nstal | Scri pt ()

RenoveScri pt (frame)

2-12 Summary

CHAPTER 3

Views

This chapter provides the basic information you need to know about views and how
to use themin your application.

You should start with this chapter if you are creating an application for Newton
devices, as views are the basic building blocks for most applications. Before
reading this chapter, you should be familiar with the information in Newton Tool kit
User’s Guide and The NewtonScript Programming Language.

This chapter introduces you to views and related items, describing

= Views, templates, the view coordinate system, and the instantiation process for
creating aview

= common tasks, such as creating a template, redrawing a view, creating special
view effects, and optimizing aview’'s performance

= View constants, methods, and functions

About Views

Views are the basic building blocks of most applications. Nearly every individual
visual item you see on the screen—for example, aradio button, or a checkbox—is
aview, and there may even be views that are not visible. Views display information
to the user in the form of text and graphics, and the user interacts with views by
tapping them, writing in them, dragging them, and so on.

Different types of views have inherently different behavior, and you can include
your own methods in views to further enhance their behavior. The primitive view
classes provided in the Newton system are described in detail in Table 2-2 (page 2-4)
in the Newton Programmer’s Reference.

You create or lay out aview with the Newton Toolkit’s graphic editor. The Newton
Toolkit creates atemplate; that is, a data object that describes how the view will
look and act on the Newton. Views are then created from templates when the
application runs on the Newton.

About Views 31

CHAPTER 3

Views

This section provides detailed conceptual information on views and other items
related to views. Specifically, it covers the following:

» templates and views and how they relate to each other

= the coordinate system used in placing views

= components used to define views

= application-defined methods that the system sends to views
= the programmatic process used to create a view

= new functions, methods, and messages added for 2.0 as well as modificationsto
existing view code

Templates

A templateis aframe containing a description of an object. (In this chapter the
objects referred to are views that can appear on the screen.) Templates contain data
descriptions of such items as fields for the user to write into, graphic objects,
buttons, and other interactive objects used to collect and display information.
Additionally, templates can include methods, which are functions that give the
view behavior.

Note

A template can a so describe nongraphic objects like
communication objects. Such objects have no visual
representation and exist only aslogical objects. 0

An application exists as a collection of templates, not just a single template. There
isaparent template that defines the application window and its most basic
features. From this parent template springs a hierarchical collection of child
templates, each defining asmall piece of the larger whole. Each graphic object,
button, text field, and so on is defined by a separate template. Each child template
exists within the context of its parent template and inherits characteristics from its
parent template, though it can override these inherited characteristics.

Within the Newton object system, atemplate for aview exists as a specia kind of
frame; that is, aframe containing or inheriting a particular group of slots

(vi ewd ass, vi ewBounds, vi ewFl ags, and some other optional dots) that
define the template’s class, dimensions, appearance, and other characteristics.
Templates are no different from any other frames, except that they contain or
inherit these particular slots (in addition to others). For more information about
frames, dlots, and the NewtonScript language, see The NewtonScript Programming
Language.

About Views

CHAPTER 3

Views

Figure 3-1 shows a collection of template frames that might make up an application.

The frame at the top represents the highest-level parent template. Each template
that has children containsavi ewChi | dr en (or st epChi | dr en) slot whose

vaueisan array of referencesto its child templates.

Figure 3-1 Template hierarchy

Parent Template

{Slot: data
Slot: data
vi ewChi | dren:

[frameRef, frameRef}

Uy

Child Template

{Slot: data
Sl ot: data
vi ewChi | dr en:

[frameRef, frameRef}

RV VS

Child Template

{Sl ot: data
Sl ot : data
}

Child Template Child Template
{Sl ot: data {Sl ot: data
Sl ot : data Sl ot : data

} }

Arrows indicate
{} a reference to objects

About Views

3-3

34

CHAPTER 3

Views

Views

A template is a data description of an object. A view isthe visual representation of
the object that is created when the template is instantiated. The system reads the
stored description in the template and creates a view on the screen—for example, a
framed rectangle containing atitle.

Besides the graphic representation you see on the screen, aview consists of a
memory object (aframe) that contains areference to its template and also contains
transient data used to create the graphic object. Any changesto view datathat occur
during run time are stored in the view, not in its template. Thisis an important point—
after an application has started up (that is, once the views are instantiated from their
templates), all changesto slots occur in the view; the template is never changed.

This distinction between templates and views with respect to changing slot values
occurs because of the NewtonScript inheritance mechanism. During run time,
templates, containing static data, are prototypes for views, which contain dynamic
data. To understand this concept, it isimperative that you have a thorough
understanding of the inheritance mechanism as described in The NewtonScript
Programming Language.

You can think of atemplate as a computer program stored on a disk. When the
program starts up, the disk copy (the template) serves as atemplate; it is copied
into dynamic memory, where it begins execution. Any changes to program
variables and data occur in the copy of the program in memory (the view), not in
the original disk version.

However, the Newton system diverges from this metaphor in that the view is not
actually a copy of the template. To save RAM use, the view contains only areference
to the template. Operations involving the reading of data are directed by reference
to the template if the datais not first found in the view. In operations in which data
iswritten or changed, the datais written into the view.

Because views are transient and data is disposed of when the view is closed, any
data written into aview that needs to be saved permanently must be saved elsewhere
before the view disappears.

A view islinked with its template through a_pr ot o dot in the view. The value of
this dot is areference to the template. Through this reference, the view can access
dotsinitstemplate. Templates may themselves contain _pr ot o slotswhich
reference other templates, called protos, on which they are built.

Views are also linked to other views in a parent-child relationship. Each view
containsa_par ent slot whose valueis areference to its parent view; that is, the
view that enclosesit. The top-level parent view of your application is called the

About Views

CHAPTER 3

Views

application base view. (Think of the view hierarchy as atree structure in which

the tree isturned upside down with itsroot at the top. The top-level parent view is

the root view.)

Figure 3-2 shows the set of views instantiated from the templates shown in
Figure 3-1. Note that this example is simplified in that it shows a separate template
for each view. In practice, multiple views often share a single template. Also, this

example doesn’'t show templates that are built on other protos.

Figure 3-2 View hierarchy
Views Templates
(transient, writable) (permanent, read-only)
Parent View Parent Template
{_pr Ot O ceeedilececccccccccnccncnccccncncancnns > {
} vi ewchi | dren: []
}
Child View A Child View B Child Template A Child Template B
{_parent: { { {
_proto: ceadfd T | T >
. - _parent:
. r _proto: T R - .
. . vi ewChi I dren: [] }
} } }
Child View C Child View D Child Template C Child Template D
{_parent: { { {
_pr oto: ----cfeceaaate. ERERRRERTEERTTERTEE EEERPTERTE >
. _ _parent:
. _pr Ot O; coceefeceecananiiineieeiaenecnacnaans >
: : } }
} }

Arrows indicate a
reference to parent/child

Arrows indicate a
reference to protos

About Views

3-5

CHAPTER 3

Views

Figure 3-3 shows an example of what this view hierarchy might represent on
the screen.

Figure 3-3 Screen representation of view hierarchy

Parent
View

Child A

) S Child B

Color

& Red Child C

it Blue Child D

The application base view of each application exists as a child of the system root
view. The root view is essentially the blank screen that exists before any other
views are drawn. It isthe ancestor of all other views that are instantiated.

Coordinate System

The view coordinate system is atwo-dimensional plane. The (0, 0) origin point of
the plane is assigned to the upper-left corner of the Newton screen, and coordinate
values increase to the right and (unlike a Cartesian plane) down. Any pixel on the
screen can be specified by avertical coordinate and a horizontal coordinate.
Figure 3-4 (page 3-7) illustrates the view system coordinate plane.

Views are defined by rectangular areas that are usually subsets of the screen. The
origin of aview is usualy its upper-left corner, though the origin can be changed.
The coordinates of aview arerelative to the origin of its parent view—they are not
screen coordinates.

It is helpful to conceptualize the coordinate plane as atwo-dimensional grid.
The intersection of a horizontal and vertical grid line marks a point on the
coordinate plane.

Note the distinction between points on the coordinate grid and pixels, the dots
that make up avisible image on the screen. Figure 3-5 illustrates the relationship
between the two: the pixel is down and to the right of the point by which it

is addressed.

About Views

CHAPTER 3

Views
Figure 3-4 View system coordinate plane
-+ -6
4+ -5
4+ -4
4 -3
4 -2
6 -5-4-3-2-1 |t
| | | | | | | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1
14 1 2 3 4 5 6
2 —_
3 —
4 —_
5 —_—
6+ Vv
Figure 3-5 Points and pixels
Grid lines —

Pixel

About Views

3-8

CHAPTER 3

Views

Asthe grid lines areinfinitely thin, so apoint isinfinitely small. Pixels, by contrast,
lie between the lines of the coordinate grid, not at their intersections.

This relationship gives them a definite physical extent, so that they can be seen on
the screen.

Defining View Characteristics

A template that describes aview is stored as aframe that has slots for view
characteristics. Here is a NewtonScript example of atemplate that describes a view:

{viewd ass: clView,

vi ewBounds: Rel Bounds(20, 50, 94, 142),

vi ewFl ags: vNoFI ags,

vi ewFor mat : vf Fi | | Wi t e+vf FranmeBl ack+vf Pen(1),
vi ewdustify: vjCenterH,

vi ewFont : si nmpl eFont 10,

decl areSel f: ' base,

debug: "dialer",

b
Briefly, the syntax for defining aframeis:

{ dotName: dotValue,
dotName: dlotValue,

1
where slotName is the name of adot, and slotValue is the value of asot. For more
details on NewtonScript syntax, refer to The NewtonScript Programming Language.

Frames serving as view templates have dots that define the following kinds of view
characterigtics:

Class Thevi ewCl ass dot defines the class of graphic object from
which the view is constructed.
Behavior Thevi ewFl ags dot defines other primary view behaviors

and controls recognition behavior.

Location, size, and alignment
Thevi ewBounds and vi ewdust i fy dots define the
location, size, and alignment of the view and its contents.

Appearance Thevi ewFor mat dlot defines the frame and fill
characteristics. Thevi ewfi | | Pat t er n and
vi ewFr anePat t er n slots control custom patterns.
Transfer modes used in drawing the view are controlled
by thevi ewTr ansf er Mode dot.

About Views

CHAPTER 3

Views

Opening and closing animation effects
Thevi ewkf f ect dot defines an animation to be performed
when the view is displayed or hidden.

Other attributes Some other slots define view characteristics such as font,
copy protection, and so on.

Inheritance links The _proto,_parent,vi ewChil dren, and
st epChi | dr en dots contain linksto aview's template,
parent view, and child views.

These different categories of view characteristics are described in the following
sections.

Class

Thevi ewC ass dot definesthe view class. Thisinformation is used by the
system when creating aview from its template. The view class describes the type

of graphic object to be used to display the data described in the template. The view
classes built into the system serve as the primitive building blocks from which al
visible objects are constructed. The view classes are listed and described in Table 2-2
(page 2-4) in the Newton Programmer’s Reference.

Behavior

Thevi ewFl ags dot defines behavioral attributes of aview other than those that
are derived from the view class. Each attribute is represented by a constant defined
as abit flag. Multiple attributes are specified by adding them together, like this:

vVi si bl e+vFr aned

Note that in the NTK viewFlags editor, multiple attributes are specified simply by
checking the appropriate boxes.

Some of thevi ewl ags constants are listed and described in Table 2-4 (page 2-11)
in the Newton Programmer’s Reference. There are also several additional constants
you can specify inthevi ewFl ags dot that control what kinds of pen input (taps,
strokes, words, letters, numbers, and so on) are recognized and handled by the view.
These other constants are described in “Recognition” (page 9-1).

View behavior is aso controlled through methods in the view that handle system
messages. As an application executes, its views receive messages from the system,
triggered by various events, usually the result of a user action. Views can handle
system messages by having methods that are named after the messages. You
control the behavior of views by providing such methods and including code that
operates on the receiving view or other views.

For a detailed description of the messages that views can receive, and information
on how to handle them, see “Application-Defined Methods” (page 3-26).”

About Views 39

3-10

CHAPTER 3

Views

Handling Pen Input

Theuse of thevd i ckabl e vi ewFl ags constant to control peninputis
important to understand, so it is worth covering here, even though it is discussed in
more detail in “Recognition” (page 9-1). Thevd i ckabl e flag must be set for a
view to receive input. If thisflag is not set for aview, that view cannot accept any
pen input.

If you have aview whosevd i ckabl e flag isnot set, pen events, such as atap,
will “fall through” that view and be registered in a background view that does
accept pen input. This can cause unexpected results if you are not careful. You

can prevent pen events from registering in the wrong view by setting the

vQ i ckabl e flag for aview and providing aVi ewd i ckScri pt method inthe
view that returns non-ni | . This causes the view to capture all pen input within
itself, instead of letting it “fall through” to a different view. If you want to capture
pen eventsin aview but still prevent input (and electronic ink), do not specify any
other recognition flags besidesvd i ckabl e.

If you want strokes or gestures but want to prevent clicks from falling through up
the parent chain, return the symbol ' ski p. Thissymbol tells the view system not
to alow the stroke to be processed by the parent chain, but instead allows the
stroke to be processed by the view itself for recognition behavior.

Several other vi ewFl ags constants are used to control and constrain the recognition
of text, the recognition of shapes, the use of dictionaries, and other input-related
features of views. For more information, refer to “Recognition” (page 9-1).

Location, Size, and Alignment

The location and size of aview are specified in the vi enBounds slot of the view
template. Thevi ewJust i f y slot affects the location of aview relative to other
views. Thevi ewdust i f y dot also controls how text and pictures within the view
are aligned and limits how much text can appear in the view (one line, one word,
and so on).

Thevi ewOri gi nXandvi ewOr i gi nY dots control the offset of child views
within aview.

View Bounds

Thevi ewBounds dot defines the size and location of the view on the screen. The
value of thevi ewBounds dot isaframe that contains four slots giving the view
coordinates (all distances arein pixels). For example:

{left: leftvalue,

t op: topValue,
right: rightValue,
bott om bottomValue

}

About Views

CHAPTER 3

Views

|eftValue The distance from the |eft origin of the parent view to the left
edge of the view.

topValue The distance from the top origin of the parent view to the top
edge of the view.

rightvValue The distance from the |€eft origin of the parent view to the
right edge of the view.

bottomValue The distance from the top origin of the parent view to the
bottom edge of the view.

Note

Thevaluesinthevi ewBounds frame are interpreted as
described here only if the view alignment is set to the default
values. Otherwise, the view alignment setting changes the way
vi ewBounds values are used. For more information, see “View
Alignment” (page 3-13). O

Asshown in Figure 3-6, al coordinates are relative to aview's parent, they are not
actual screen coordinates.

Figure 3-6 Bounds parameters
Parent View T
Top
View

Bottom

— Left —»

- Right

When you are using the Newton Toolkit (NTK) to lay out views for your applica
tion, thevi ewBounds dlot is set automatically when you drag out aview in the
layout window. If you are writing code in which you need to specify avi ewBounds
slot, you can use one of the global functions such as Set Bounds or Rel Bounds,
which are described in “ Finding the Bounds of Views’ (page 3-39).

About Views 3-11

312

CHAPTER 3

Views

View Size Relative to Parent Size

A view isnormally entirely enclosed by its parent view. You shouldn’t create a
view whose bounds extend outside its parent’s bounds. If you do create such aview,
for example containing a picture that you want to show just part of, you need to set
thevd i ppi ng flaginthevi ewFl ags dot of the parent view.

If you do not set thevd i ppi ng flag for the parent view, the behavior is
unpredictable. The portions of the view outside the parent’s bounds may or may
not draw properly. All pen input is clipped to the parent’s bounds.

Note that the base views of al applications (all root view children, in fact) are
automatically clipped, whether or not thevC i ppi ng flag is set.

If your application base view is very small and you need to create a larger floating
child view, for example, aslip, you should use the Bui | dCont ext function. This
function creates a specia view that isachild of the root view. To open the view,
you send the Open message to it.

Using Screen-Relative Bounds

Newton is afamily of products with varying screen sizes. If you want your
application to be compatible with a variety of individual Newton products, you
should design your application so that it sizesitself dynamically (that is, at run
time), accounting for the size of the screen on which it is running, which could be
smaller or larger than the original Newton M essagePad screen.

You may want to dynamically size the base view of your application so that it
changes for different screen sizes, or you may want it to remain afixed size on al
platforms. In the latter case, you should still check the actual screen size at run
time to make sure there is enough room for your application.

You can use the global function Get AppPar ans to check the size of the screen at
run time. This function returns a frame containing the coordinates of the drawable
area of the screen, as well as other information (see “Utility Functions Reference”
(page 23-1) in the Newton Programmer’s Reference for a description). The frame
returned looks like this:

{appAreaLeft: 0,
appAreaTop: O,
appAr eaW dt h: 240,
appAr eaHei ght: 320,

-}

The following example shows how to use the Vi ewSet upFor nScri pt method in
your application base view to make the application afixed size, but no larger than
the size of the screen:

About Views

CHAPTER 3

Views

vi ewSet upFor nScri pt: func()

begi n
| ocal b := Get AppParans();
sel f. vi ewbounds : = Rel Bounds(

b. appArealLeft,

b. appAr eaTop,

m n(200, b.appAreaW dth), /1 200 pixels w de max

m n(300, b.appAreaHeight)); // 300 pixels high max
end

Don't blindly size your application to the full extents of the screen. This might look
odd if your application runs on a system with a much larger screen.

Do include aborder around your application base view. That way, if the application
runs on ascreen that is larger than the size of your application, the user will be able
to clearly seeits boundaries.

The important point isto correctly size the application base view. Child views are
positioned relative to the application base view. If you have adynamically sizing
application base view, make sure that the child views also are sized dynamically, so
that they are laid out correctly no matter how the dimensions of the base view
change. You can ensure correct layout by using parent-relative and sibling-relative
view alignment, as explained in the next section, “View Alignment.”

One additional consideration you should note isthat on alarger screen, it may be
possible for the user to move applications around. You should not rely on the
top-left coordinate of your application base view being fixed. To prevent this from
happening check your application’s current location when you work with global
coordinates. To do this, send thed obal Box message to your application base view.

View Alignment

Thevi ewdusti fy dotisused to set the view alignment and is closely linked in
its usage and effects with thevi ewBounds dot.

Thevi ewdust i fy dot specifies how text and graphics are aligned within the
view and how the bounds of the view are aligned relative to its parent or sibling
views. (Sibling views are child views that have a common parent view.)

Inthevi ewJust i fy dot, you can specify one or more alignment attributes,
which are represented by constants defined as bit flags. You can specify one
alignment attribute from each of the following groups:

= horizontal alignment of view contents (applies to views of class
cl Par agr aphVi ewand cl Pi ct ur eVi ewonly)

= vertical alignment of view contents (applies to views of class
cl Par agr aphVi ewand cl Pi ct ur eVi ewonly)

About Views 3-13

CHAPTER 3

Views

= horizontal alignment of the view relative to its parent or sibling view
= vertical alignment of the view relative to its parent or sibling view
= text limits

For example, you could specify these alignment attributes for a button view that has
its text centered within the view and is placed relative to its parent and sibling views:

vj Cent er H+vj Cent er V+vj Si bl i ngRi ght H+vj Par ent Bot t omV+oneLi neOnl y

If you don't specify an attribute from a group, the default attribute for that group
is used.

The view alignment attributes and the defaults are listed and described in Table 3-1.
The effects of these attributes are illustrated in Figure 3-7, following the table.

Sibling setting are not used if the view has not previous setting, instead the parent
settings are used.

Table 3-1 vi ewdust i f y constants

Constant

Value Description

Horizontal alignment of view contents

vj LeftH
vj CenterH
vj Ri ghtH
vj Ful Il H

0 Left alignment (default).

2 Center alignment (default for cl Pi ct ur eVi ewonly).
1 Right alignment.

3 Stretches the view contents to fill the entire view width.

Vertical alignment of view contents®

vj TopV

vj CenterV
vj Bott omVv
vj Ful | V

0 Top alignment (default).

4 Center alignment (default for cl Pi ct ur eVi ewonly).
8 Bottom alignment.

12 For views of thecl Pi ct ur eVi ewclass only;

stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling view?
vj Parent Lef tH 0 The left and right view bounds are relative to the

3-14

parent’s |eft side (default).

continued

About Views

CHAPTER 3

Views

Table 3-1

vi ewdJust i fy constants (continued)

Constant
vj Par ent Cent er H

vj Parent Ri ghtH

vj Parent Ful | H

vj Si bl i ngNoH
vj Si blingLeftH

vj Si bl i ngCenterH

vj Si bli ngRi ght H

vj Si blingFul Il H

Value
16

32

48

2048

512

1024

1536

Description

The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in the parent view. If you
specify any other number for left, the view is offset
by that much from a centered position (for example,
specifying left = 10 and right = width+10 offsets the
view 10 pixels to the right from a centered position).

The left and right view bounds are relative to the
parent’sright side, and will usually be negative.

The left bounds value is used as an offset from the left
edge of the parent and the right bounds value as an
offset from the right edge of the parent (for example,
specifying left = 10 and right = —10 leaves a 10-pixel
margin on each side).

(Default) Do not use sibling horizontal alignment.

The left and right view bounds are relative to the
sib